The Internal Language of Univalent Categories

Niels van der Weide

Type Theory

- In this talk, we study type theory
- Frequently, one wants to have a nice metatheory: normalization, canonicity, ...
- This is to guarnatee correct implementations
- However, it tends to be quite complicated to prove such properties

Semantical Methods

- Semantical methods are a common method to prove metatheoretical properties
- The ideas originated from Tait (strong normalization of the simply typed lambda calculus) and it has been refined to logical relations and categorical gluing
- Note: these proofs can still be rather complicated
- Hence, we want to formalize semantical methods
- Benefits: correctness, usability in larger developments, modularity, collaboration

Problem

- Big problem: to formalize the metatheory of type theory in a proof assistant
- We focus on the categorical semantics and proofs
- In this talk, we look at internal language theorems that relate categorical models and type theories

Internal Languages

- ► A celebrated result by Clairambault and Dybjer says that extensional type theory with ∏-types and ∑-types is the internal language of locally Cartesian closed categories¹
- ▶ Precisely: the bicategories of democratic categories with families with ∏, ∑, and =_{ext} and of locally Cartesian closed categories are biequivalent

This theorem is nice, because

- it gives **soundness**: the language can be *interpreted*
- it gives completeness: every model generates a language
- ▶ it deals with translations: functoriality

¹Originally by Seely, but Seely's proof incorrectly dealt with substitution

Foundations

- To formalize the internal language theorem, we need suitable foundations
- Since our focus is on categorical semantics, we would like to use foundations whose strength is formalizing with category theory
- Enter: univalent foundations

Univalent Foundations

- Univalent foundations: extension of Martin-Löf type theory with the univalence axiom
- Univalence axiom: equivalence of types is equality (whenever two types are equivalent, then they have the same properties)
- In recent years, univalent foundations has been established as convenient language to reason about category theory
- Hence, univalent foundations provide a good framework to formally study the metatheory of type theory

Category Theory in Univalent Foundations

- There are two flavors of category in univalent foundations: strict categories and univalent categories
- Strict categories: invariant under isomorphism
- Univalent categories: invariant under adjoint equivalence
- Note: univalent categories are more common than strict ones (sets and presheaves)
- This suggests that there are two views on the internal language theorem

The Internal Language Theorem in UF

- The proof by Clairambault and Dybjer of the internal language theorem can almost verbatim be formalized for strict categories
- However, for univalent categories it is more subtle
- To reason about sets and presheaves, one needs this theorem for univalent categories²
- Main question of this talk: what is the internal language of univalent categories?

²The alternative would be using iterative sets (Gylterud and Stenholm)

Introduction to Univalent Categories

An Introduction to Comprehension Categories

The Main Theorem

Introduction to Univalent Categories

An Introduction to Comprehension Categories

The Main Theorem

What was univalent foundations again?

Definition

Let A and B be types. By path induction, we define a map **idtoequiv**_{A,B} that sends paths A = B to equivalences $A \simeq B$.

Axiom (Univalence Axiom)

The map $idtoequiv_{A,B}$ is an equivalence of types for all A and B.

Consequences of the Univalence Axiom

- Whenever two types are equivalent, then they share the same properties
- It is not that case that whenever p, q : x = y, that we also have p = q (for example, the universe)

Sets in Univalent Foundations

Definition

A type A is a **set** if for all x, y : A and all p, q : x = y, we have that p = q.

Sets in Univalent Foundations

Definition

A type A is a **set** if for all x, y : A and all p, q : x = y, we have that p = q.

Intuitively:

- Think of a type A as a space
- Terms: points
- Proofs of x = y: paths in A
- Set: given by the points

Categories

Definition

A category³ \mathcal{C} is given by

- a type C_0 of objects (we write C instead of C_0)
- for all objects x, y : C a set $x \to y$ of morphisms
- ▶ for all objects x : C an **identity morphism** $id_x : x \to x$
- ▶ for all morphisms $f : x \to y$ and $g : y \to z$, a composition $f \cdot g : x \to z$

such that the composition is associative and the identity is neutral with regards to composition

³The HoTT book says *precategory* for this notion, but I don't

Univalent Categories

Definition

Let x and y be objects in a category C. By path induction, we define a map **idtoiso**_{x,y} that sends paths x = y to isomorphisms $x \cong y$.

Definition

A category is called **univalent** if the map $idtoiso_{x,y}$ is an equivalence of types for all x and y.

Compare to the Univalence Axiom

Definition

Let A and B be types. By path induction, we define a map **idtoequiv**_{A,B} that sends paths A = B to equivalences $A \simeq B$.

Axiom (Univalence Axiom)

The map $idtoequiv_{A,B}$ is an equivalence of types for all A and B.

And Strict Categories

Definition

A category is called **strict** if the type of objects is strict.

There are several advantages to univalent categories

1. Category theory often studies categories up to **adjoint equivalence**. Properties of univalent categories are invariant under equivalence, whereas for strict categories, they are invariant under isomorphism.

There are several advantages to univalent categories

- 1. Category theory often studies categories up to **adjoint equivalence**. Properties of univalent categories are invariant under equivalence, whereas for strict categories, they are invariant under isomorphism.
- 2. Univalence allows us to do induction on adjoint equivalences, and this simplifies some proofs.

There are several advantages to univalent categories

- 1. Category theory often studies categories up to **adjoint equivalence**. Properties of univalent categories are invariant under equivalence, whereas for strict categories, they are invariant under isomorphism.
- 2. Univalence allows us to do induction on adjoint equivalences, and this simplifies some proofs.
- 3. For univalent categories, one can constructively prove that every fully faithful and essentially surjective functor is an equivalence, but not for strict categories.

There are several advantages to univalent categories

- 1. Category theory often studies categories up to **adjoint equivalence**. Properties of univalent categories are invariant under equivalence, whereas for strict categories, they are invariant under isomorphism.
- 2. Univalence allows us to do induction on adjoint equivalences, and this simplifies some proofs.
- 3. For univalent categories, one can constructively prove that every fully faithful and essentially surjective functor is an equivalence, but not for strict categories.
- 4. Univalent categories are more common than strict categories. For example, the categories of sets, presheaves, and sheaves are univalent, but not strict.

What do we want?

- We want to study the internal language of univalent categories
- The ultimate goal is to develop a type theory that we can use to reason about univalent categories
- Analogous theorem: Martin-Löf type theory is the internal language of locally Cartesian closed categories (Clairambault and Dybjer)

Introduction to Univalent Categories

An Introduction to Comprehension Categories

The Main Theorem

Categories with Families?

- Clairambault and Dybjer use categories with families (CwF) to prove their internal language theorem
- Note: in a CwF, the types form a set
- However, in the set model of type theory, types in the empty context are given by sets
- Since the collection of sets is not a set, we do not use CwFs in our work

Our Requirements

We are looking for a **categorical structure** in which we can interpret dependent type theory such that

- the types do not have to form a set (this would invalidate the set/presheaf/sheaf model)
- we use universal properties to express substitution (this simplifies dealing with coherence)

Our Requirements

We are looking for a **categorical structure** in which we can interpret dependent type theory such that

- the types do not have to form a set (this would invalidate the set/presheaf/sheaf model)
- we use universal properties to express substitution (this simplifies dealing with coherence)

We shall see that **comprehension categories** satisfy these requirements.

Our Requirements

We are looking for a **categorical structure** in which we can interpret dependent type theory such that

- the types do not have to form a set (this would invalidate the set/presheaf/sheaf model)
- we use universal properties to express substitution (this simplifies dealing with coherence)

We shall see that **comprehension categories** satisfy these requirements.

But... what are they?

In the beginning, there were hyperdoctrines

- The notion of comprehension category is inspired by hyperdoctrines
- Hyperdoctrines were introduced as a categorical model for first-order predicate logic
- Hyperdoctrines come in many different flavors to incorporate different type formers and forms of logic
- We shall discuss a basic notion of hyperdoctrines

Hyperdoctrines, formally

Definition

- A hyperdoctrine is given by
 - \blacktriangleright a category ${\cal C}$ with finite products
 - ▶ a presheaf $P : C^{op} \rightarrow Lat$

Hyperdoctrines, formally

Definition

A hyperdoctrine is given by

- a category C with finite products
- ▶ a presheaf $P : C^{op} \rightarrow Lat$

Explanation:

- ▶ objects in C are **contexts**, morphisms are **substitutions**
- elements of $P(\Gamma)$ are **formulas** in context Γ
- the action of P on morphisms: substitution of formulas
- the lattice operations give connectives

Hyperdoctrines, formally

Definition

A hyperdoctrine is given by

- a category C with finite products
- ▶ a presheaf $P : C^{op} \rightarrow Lat$

Explanation:

- ▶ objects in C are **contexts**, morphisms are **substitutions**
- elements of $P(\Gamma)$ are **formulas** in context Γ
- the action of P on morphisms: substitution of formulas
- the lattice operations give connectives

For simplicity, we shall focus on presheaves $\mathcal{C}^{op} \to \textbf{Set}$

Remember our first requirement

the types do not have to form a set (this would invalidate the set/presheaf/sheaf model)

This is not satisfied since lattices have a set of elements. So: we must **categorify** the definition of hyperdoctrines

Categorifying Hyperdoctrines

Category Theory	Bicategory Theory
Functor	Pseudofunctor
Set	Cat
Functor from \mathcal{C}^{op} to \mathbf{Set}	Pseudounctor from \mathcal{C}^{op} to Cat

However...

- The definition of pseudofunctor is quite complicated
- Why? We have to write down all coherences and the definition is 2-categorical
- Precisely: 5 pieces of data and 7 laws
- This is why we want to use universal properties: for those, the coherences follow automatically

The main idea: Grothendieck construction

Theorem

Functions $A \rightarrow B$ are the same as families of types Y over B.

Theorem

Functions $A \rightarrow B$ are the same as families of types Y over B.

Proof.

Given $f : A \rightarrow B$, define the family that sends b : B to its fiber:

$$\sum_{a:A} b = f(a)$$

Theorem

Functions $A \rightarrow B$ are the same as families of types Y over B.

Proof.

Given $f : A \rightarrow B$, define the family that sends b : B to its fiber:

$$\sum_{a:A} b = f(a)$$

Given a type family Y over B, define the total space $\int Y$ of Y:

$$\sum_{b:B} Y(b)$$

Then we have a function $\int Y \to B$ (first projection).

Theorem

Functions $A \rightarrow B$ are the same as families of types Y over B.

Proof.

Given $f : A \rightarrow B$, define the family that sends b : B to its fiber:

$$\sum_{a:A} b = f(a)$$

Given a type family Y over B, define the total space $\int Y$ of Y:

$$\sum_{b:B} Y(b)$$

Then we have a function $\int Y \rightarrow B$ (first projection). The Grothendieck construction: this, but for categories

Enter Grothendieck

Suppose, we have $F : \mathcal{C}^{op} \to \mathbf{Cat}$. Define the category $\int F$:

- Objects: pairs of x : C and $\overline{x} : F(x)$
- Morphisms from (x, \overline{x}) to (y, \overline{y}) : pairs of $f : x \to y$ and $\overline{x} \to F(f)(\overline{y})$

Enter Grothendieck

Suppose, we have $F : \mathcal{C}^{op} \to \mathbf{Cat}$. Define the category $\int F$:

- Objects: pairs of x : C and $\overline{x} : F(x)$
- Morphisms from (x, \overline{x}) to (y, \overline{y}) : pairs of $f : x \to y$ and $\overline{x} \to F(f)(\overline{y})$

Note:

- We have x : C and y : C and $f : x \to y$
- \overline{x} : F(x) and \overline{y} : F(y)
- F(f) is a functor from F(y) to F(x) (contravariant)
- So: $F(f)(\overline{y}) : F(x)$
- So: $F(x) \to F(f)(\overline{y})$ is well-typed (morphism in F(x))

Enter Grothendieck

Suppose, we have $F : \mathcal{C}^{op} \to \mathbf{Cat}$. Define the category $\int F$:

- Objects: pairs of x : C and $\overline{x} : F(x)$
- Morphisms from (x, \overline{x}) to (y, \overline{y}) : pairs of $f : x \to y$ and $\overline{x} \to F(f)(\overline{y})$

Note:

- We have x : C and y : C and $f : x \to y$
- \overline{x} : F(x) and \overline{y} : F(y)
- F(f) is a functor from F(y) to F(x) (contravariant)

So:
$$F(f)(\overline{y}) : F(x)$$

• So: $F(x) \to F(f)(\overline{y})$ is well-typed (morphism in F(x)) We have a functor $\int F \to C$

However... (again)

- Suppose, we have a functor G : E → C. Can G be constructed as in the previous slide?
- ► Nope.
- Counterexample, $Mon \rightarrow Set$
- We need to assume that G is a **fibration**

Defining Fibrations

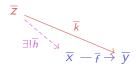
We define fibrations in two steps

- we define cartesian morphisms (expresses the universal property)
- we define fibrations

Cartesian morphisms

Definition

A morphism $\overline{f} : \overline{x} \to \overline{y}$ over $f : x \to y$ is called **cartesian** if for all $h : z \to \overline{x}$ and $\overline{k} : \overline{z} \to \overline{y}$ over $h \cdot f$ there is a unique $\overline{h} : \overline{z} \to \overline{x}$ such that $\overline{h} \cdot \overline{f} = \overline{k}$.



$$z - h \rightarrow x - f \rightarrow y$$

Fibrations

Definition

We say that *F* is a **fibration** if for all $f : x \to y$ and \overline{y} there is a cartesian morphism \overline{f} over *f*.

 $\overline{X} - \overline{f} \to \overline{y}$ $X - f \to y$

Example of a Fibration

- ► Suppose, C has pullbacks
- We write C[→] for the arrow category of C whose objects are morphisms x → y in C
- The functor cod : C[→] → C sends morphisms x → y to their codomain y.
- Then cod is a fibration

Wait... where were we?

Let's briefly recall where we are.

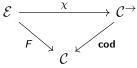
- We defined the notion of **fibration**
- Fibrations allow us to interpret dependent types and substitution
- The motivation behind fibration comes from hyperdoctrines and the Grothendieck construction (fiberwise representation of functions)
- This is the first ingredient for defining comprehension categories
- The missing part: context extension

Note: this notion is technical and hard to understand when you see it for the first time

Comprehension Categories

Definition

A (full) comprehension category is a commuting triangle of functors



such that C has a terminal object [] and such that χ sends cartesian morphisms to pullbacks and such that χ is fully faithful.

Introduction to Univalent Categories

An Introduction to Comprehension Categories

The Main Theorem

Type Formers

To state our main theorem, we need the following type formers in comprehension categories

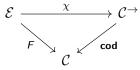
- Unit types (fiberwise terminal object)
- Binary product types (fiberwise products)
- Equalizer types (fiberwise equalizers)
- Dependent sums (*left adjoint to substitution*)

We also need **democracy**

Democracy

Definition

Suppose that we have the following comprehension category



We say that it is **democratic** if for every context $\Gamma : C$ there is a type $\overline{\Gamma} : \mathcal{E}$ over [] such that $\chi(\overline{\Gamma}) \cong \Gamma$.

Intuitively: every context has a representative.

The Theorem

A **DFL comprehension category** is a comprehension category that

- is democratic
- has unity types
- supports binary products
- supports equalizer types
- supports dependent sums

Theorem

We have a biequivalence between the bicategories of univalent DFL comprehension categories and of univalent categories with finite limits.

Extensions

We extended this to:

- ▶ locally Cartesian closed categories (∏-types)
- extensive categories (disjoint sum types)
- exact categories (quotient types)
- pretoposes (quotient types and disjoint sum types)
- ► ∏-pretoposes (pretopos with ∏-types)

Usage of Univalence in the Proof

There are several points where we used univalence to simplify the proof.

- Transporting structure along equivalences
- Classifying equivalences
- Splitting: substitution laws hold up to isomorphism in fibrations

Conclusion

We did:

- A formalization of the biequivalence between univalent comprehension categories and locally Cartesian closed univalent categories
- ► An **extension** to pretoposes, ∏-pretoposes, and elementary toposes
- The formalization is available online⁴

Important points:

- We used comprehension categories instead of categories with families
- Univalence made the proof simpler

⁴https://github.com/UniMath/UniMath/tree/master/UniMath/ Bicategories/ComprehensionCat