
The Internal Language of Univalent Categories

Niels van der Weide

1/44



Type Theory

▶ In this talk, we study type theory

▶ Frequently, one wants to have a nice metatheory:
normalization, canonicity, ...

▶ This is to guarnatee correct implementations

▶ However, it tends to be quite complicated to prove such
properties

2/44



Semantical Methods

▶ Semantical methods are a common method to prove
metatheoretical properties

▶ The ideas originated from Tait (strong normalization of the
simply typed lambda calculus) and it has been refined to
logical relations and categorical gluing

▶ Note: these proofs can still be rather complicated

▶ Hence, we want to formalize semantical methods

▶ Benefits: correctness, usability in larger developments,
modularity, collaboration

3/44



Problem

▶ Big problem: to formalize the metatheory of type theory
in a proof assistant

▶ We focus on the categorical semantics and proofs

▶ In this talk, we look at internal language theorems that
relate categorical models and type theories

4/44



Internal Languages

▶ A celebrated result by Clairambault and Dybjer says that
extensional type theory with

∏
-types and

∑
-types is the

internal language of locally Cartesian closed categories1

▶ Precisely: the bicategories of democratic categories with
families with

∏
,
∑

, and =ext and of locally Cartesian closed
categories are biequivalent

This theorem is nice, because

▶ it gives soundness: the language can be interpreted

▶ it gives completeness: every model generates a language

▶ it deals with translations: functoriality

1Originally by Seely, but Seely’s proof incorrectly dealt with substitution

5/44



Foundations

▶ To formalize the internal language theorem, we need suitable
foundations

▶ Since our focus is on categorical semantics, we would like to
use foundations whose strength is formalizing with
category theory

▶ Enter: univalent foundations

6/44



Univalent Foundations

▶ Univalent foundations: extension of Martin-Löf type theory
with the univalence axiom

▶ Univalence axiom: equivalence of types is equality (whenever
two types are equivalent, then they have the same properties)

▶ In recent years, univalent foundations has been established as
convenient language to reason about category theory

▶ Hence, univalent foundations provide a good framework to
formally study the metatheory of type theory

7/44



Category Theory in Univalent Foundations

▶ There are two flavors of category in univalent foundations:
strict categories and univalent categories

▶ Strict categories: invariant under isomorphism

▶ Univalent categories: invariant under adjoint equivalence

▶ Note: univalent categories are more common than strict
ones (sets and presheaves)

▶ This suggests that there are two views on the internal
language theorem

8/44



The Internal Language Theorem in UF

▶ The proof by Clairambault and Dybjer of the internal
language theorem can almost verbatim be formalized for
strict categories

▶ However, for univalent categories it is more subtle

▶ To reason about sets and presheaves, one needs this theorem
for univalent categories2

▶ Main question of this talk: what is the internal language of
univalent categories?

2The alternative would be using iterative sets (Gylterud and Stenholm)

9/44



This Talk

Introduction to Univalent Categories

An Introduction to Comprehension Categories

The Main Theorem

10/44



Introduction to Univalent Categories

An Introduction to Comprehension Categories

The Main Theorem

11/44



What was univalent foundations again?

Definition
Let A and B be types. By path induction, we define a map
idtoequivA,B that sends paths A = B to equivalences A ≃ B.

Axiom (Univalence Axiom)

The map idtoequivA,B is an equivalence of types for all A and B.

12/44



Consequences of the Univalence Axiom

▶ Whenever two types are equivalent, then they share the same
properties

▶ It is not that case that whenever p, q : x = y , that we also
have p = q (for example, the universe)

13/44



Sets in Univalent Foundations

Definition
A type A is a set if for all x , y : A and all p, q : x = y , we have
that p = q.

Intuitively:

▶ Think of a type A as a space

▶ Terms: points

▶ Proofs of x = y : paths in A

▶ Set: given by the points

14/44



Sets in Univalent Foundations

Definition
A type A is a set if for all x , y : A and all p, q : x = y , we have
that p = q.

Intuitively:

▶ Think of a type A as a space

▶ Terms: points

▶ Proofs of x = y : paths in A

▶ Set: given by the points

14/44



Categories

Definition
A category3 C is given by

▶ a type C0 of objects (we write C instead of C0)
▶ for all objects x , y : C a set x → y of morphisms

▶ for all objects x : C an identity morphism idx : x → x

▶ for all morphisms f : x → y and g : y → z , a composition
f · g : x → z

such that the composition is associative and the identity is neutral
with regards to composition

3The HoTT book says precategory for this notion, but I don’t

15/44



Univalent Categories

Definition
Let x and y be objects in a category C. By path induction, we
define a map idtoisox ,y that sends paths x = y to isomorphisms
x ∼= y .

Definition
A category is called univalent if the map idtoisox ,y is an
equivalence of types for all x and y .

16/44



Compare to the Univalence Axiom

Definition
Let A and B be types. By path induction, we define a map
idtoequivA,B that sends paths A = B to equivalences A ≃ B.

Axiom (Univalence Axiom)

The map idtoequivA,B is an equivalence of types for all A and B.

17/44



And Strict Categories

Definition
A category is called strict if the type of objects is strict.

18/44



Why Univalent Categories?

There are several advantages to univalent categories

1. Category theory often studies categories up to adjoint
equivalence. Properties of univalent categories are invariant
under equivalence, whereas for strict categories, they are
invariant under isomorphism.

2. Univalence allows us to do induction on adjoint equivalences,
and this simplifies some proofs.

3. For univalent categories, one can constructively prove that
every fully faithful and essentially surjective functor is an
equivalence, but not for strict categories.

4. Univalent categories are more common than strict categories.
For example, the categories of sets, presheaves, and sheaves
are univalent, but not strict.

19/44



Why Univalent Categories?

There are several advantages to univalent categories

1. Category theory often studies categories up to adjoint
equivalence. Properties of univalent categories are invariant
under equivalence, whereas for strict categories, they are
invariant under isomorphism.

2. Univalence allows us to do induction on adjoint equivalences,
and this simplifies some proofs.

3. For univalent categories, one can constructively prove that
every fully faithful and essentially surjective functor is an
equivalence, but not for strict categories.

4. Univalent categories are more common than strict categories.
For example, the categories of sets, presheaves, and sheaves
are univalent, but not strict.

19/44



Why Univalent Categories?

There are several advantages to univalent categories

1. Category theory often studies categories up to adjoint
equivalence. Properties of univalent categories are invariant
under equivalence, whereas for strict categories, they are
invariant under isomorphism.

2. Univalence allows us to do induction on adjoint equivalences,
and this simplifies some proofs.

3. For univalent categories, one can constructively prove that
every fully faithful and essentially surjective functor is an
equivalence, but not for strict categories.

4. Univalent categories are more common than strict categories.
For example, the categories of sets, presheaves, and sheaves
are univalent, but not strict.

19/44



Why Univalent Categories?

There are several advantages to univalent categories

1. Category theory often studies categories up to adjoint
equivalence. Properties of univalent categories are invariant
under equivalence, whereas for strict categories, they are
invariant under isomorphism.

2. Univalence allows us to do induction on adjoint equivalences,
and this simplifies some proofs.

3. For univalent categories, one can constructively prove that
every fully faithful and essentially surjective functor is an
equivalence, but not for strict categories.

4. Univalent categories are more common than strict categories.
For example, the categories of sets, presheaves, and sheaves
are univalent, but not strict.

19/44



What do we want?

▶ We want to study the internal language of univalent
categories

▶ The ultimate goal is to develop a type theory that we can
use to reason about univalent categories

▶ Analogous theorem: Martin-Löf type theory is the internal
language of locally Cartesian closed categories (Clairambault
and Dybjer)

20/44



Introduction to Univalent Categories

An Introduction to Comprehension Categories

The Main Theorem

21/44



Categories with Families?

▶ Clairambault and Dybjer use categories with families (CwF)
to prove their internal language theorem

▶ Note: in a CwF, the types form a set

▶ However, in the set model of type theory, types in the empty
context are given by sets

▶ Since the collection of sets is not a set, we do not use CwFs
in our work

22/44



Our Requirements

We are looking for a categorical structure in which we can
interpret dependent type theory such that

▶ the types do not have to form a set (this would invalidate the
set/presheaf/sheaf model)

▶ we use universal properties to express substitution (this
simplifies dealing with coherence)

We shall see that comprehension categories satisfy these
requirements.
But... what are they?

23/44



Our Requirements

We are looking for a categorical structure in which we can
interpret dependent type theory such that

▶ the types do not have to form a set (this would invalidate the
set/presheaf/sheaf model)

▶ we use universal properties to express substitution (this
simplifies dealing with coherence)

We shall see that comprehension categories satisfy these
requirements.

But... what are they?

23/44



Our Requirements

We are looking for a categorical structure in which we can
interpret dependent type theory such that

▶ the types do not have to form a set (this would invalidate the
set/presheaf/sheaf model)

▶ we use universal properties to express substitution (this
simplifies dealing with coherence)

We shall see that comprehension categories satisfy these
requirements.
But... what are they?

23/44



In the beginning, there were hyperdoctrines

▶ The notion of comprehension category is inspired by
hyperdoctrines

▶ Hyperdoctrines were introduced as a categorical model for
first-order predicate logic

▶ Hyperdoctrines come in many different flavors to incorporate
different type formers and forms of logic

▶ We shall discuss a basic notion of hyperdoctrines

24/44



Hyperdoctrines, formally

Definition
A hyperdoctrine is given by

▶ a category C with finite products

▶ a presheaf P : Cop → Lat

Explanation:

▶ objects in C are contexts, morphisms are substitutions

▶ elements of P(Γ) are formulas in context Γ

▶ the action of P on morphisms: substitution of formulas

▶ the lattice operations give connectives

For simplicity, we shall focus on presheaves Cop → Set

25/44



Hyperdoctrines, formally

Definition
A hyperdoctrine is given by

▶ a category C with finite products

▶ a presheaf P : Cop → Lat

Explanation:

▶ objects in C are contexts, morphisms are substitutions

▶ elements of P(Γ) are formulas in context Γ

▶ the action of P on morphisms: substitution of formulas

▶ the lattice operations give connectives

For simplicity, we shall focus on presheaves Cop → Set

25/44



Hyperdoctrines, formally

Definition
A hyperdoctrine is given by

▶ a category C with finite products

▶ a presheaf P : Cop → Lat

Explanation:

▶ objects in C are contexts, morphisms are substitutions

▶ elements of P(Γ) are formulas in context Γ

▶ the action of P on morphisms: substitution of formulas

▶ the lattice operations give connectives

For simplicity, we shall focus on presheaves Cop → Set

25/44



However...

Remember our first requirement

▶ the types do not have to form a set (this would invalidate the
set/presheaf/sheaf model)

This is not satisfied since lattices have a set of elements.
So: we must categorify the definition of hyperdoctrines

26/44



Categorifying Hyperdoctrines

Category Theory Bicategory Theory

Functor Pseudofunctor
Set Cat

Functor from Cop to Set Pseudounctor from Cop to Cat

27/44



However...

▶ The definition of pseudofunctor is quite complicated

▶ Why? We have to write down all coherences and the
definition is 2-categorical

▶ Precisely: 5 pieces of data and 7 laws

▶ This is why we want to use universal properties: for those,
the coherences follow automatically

The main idea: Grothendieck construction

28/44



Grothendieck Construction, Intuition

Theorem
Functions A → B are the same as families of types Y over B.

Proof.
Given f : A → B, define the family that sends b : B to its fiber:∑

a:A

b = f (a)

Given a type family Y over B, define the total space
∫
Y of Y :∑

b:B

Y (b)

Then we have a function
∫
Y → B (first projection).

The Grothendieck construction: this, but for categories

29/44



Grothendieck Construction, Intuition

Theorem
Functions A → B are the same as families of types Y over B.

Proof.
Given f : A → B, define the family that sends b : B to its fiber:∑

a:A

b = f (a)

Given a type family Y over B, define the total space
∫
Y of Y :∑

b:B

Y (b)

Then we have a function
∫
Y → B (first projection).

The Grothendieck construction: this, but for categories

29/44



Grothendieck Construction, Intuition

Theorem
Functions A → B are the same as families of types Y over B.

Proof.
Given f : A → B, define the family that sends b : B to its fiber:∑

a:A

b = f (a)

Given a type family Y over B, define the total space
∫
Y of Y :∑

b:B

Y (b)

Then we have a function
∫
Y → B (first projection).

The Grothendieck construction: this, but for categories

29/44



Grothendieck Construction, Intuition

Theorem
Functions A → B are the same as families of types Y over B.

Proof.
Given f : A → B, define the family that sends b : B to its fiber:∑

a:A

b = f (a)

Given a type family Y over B, define the total space
∫
Y of Y :∑

b:B

Y (b)

Then we have a function
∫
Y → B (first projection).

The Grothendieck construction: this, but for categories

29/44



Enter Grothendieck

Supppose, we have F : Cop → Cat. Define the category
∫
F :

▶ Objects: pairs of x : C and x : F (x)

▶ Morphisms from (x , x) to (y , y): pairs of f : x → y and
x → F (f )(y)

Note:

▶ We have x : C and y : C and f : x → y

▶ x : F (x) and y : F (y)

▶ F (f ) is a functor from F (y) to F (x) (contravariant)

▶ So: F (f )(y) : F (x)

▶ So: F (x) → F (f )(y) is well-typed (morphism in F (x))

We have a functor
∫
F → C

30/44



Enter Grothendieck

Supppose, we have F : Cop → Cat. Define the category
∫
F :

▶ Objects: pairs of x : C and x : F (x)

▶ Morphisms from (x , x) to (y , y): pairs of f : x → y and
x → F (f )(y)

Note:

▶ We have x : C and y : C and f : x → y

▶ x : F (x) and y : F (y)

▶ F (f ) is a functor from F (y) to F (x) (contravariant)

▶ So: F (f )(y) : F (x)

▶ So: F (x) → F (f )(y) is well-typed (morphism in F (x))

We have a functor
∫
F → C

30/44



Enter Grothendieck

Supppose, we have F : Cop → Cat. Define the category
∫
F :

▶ Objects: pairs of x : C and x : F (x)

▶ Morphisms from (x , x) to (y , y): pairs of f : x → y and
x → F (f )(y)

Note:

▶ We have x : C and y : C and f : x → y

▶ x : F (x) and y : F (y)

▶ F (f ) is a functor from F (y) to F (x) (contravariant)

▶ So: F (f )(y) : F (x)

▶ So: F (x) → F (f )(y) is well-typed (morphism in F (x))

We have a functor
∫
F → C

30/44



However... (again)

▶ Suppose, we have a functor G : E → C . Can G be
constructed as in the previous slide?

▶ Nope.

▶ Counterexample, Mon → Set

▶ We need to assume that G is a fibration

31/44



Defining Fibrations

We define fibrations in two steps

▶ we define cartesian morphisms (expresses the universal
property)

▶ we define fibrations

32/44



Cartesian morphisms

Definition
A morphism f : x → y over f : x → y is called cartesian if for all
h : z →x and k : z →y over h · f there is a unique h : z→x such
that h · f = k .

z

x y

z x y

∃!h
k

f

h f

33/44



Fibrations

Definition
We say that F is a fibration if for all f : x → y and y there is a
cartesian morphism f over f .

x y

x y

f

f

34/44



Example of a Fibration

▶ Suppose, C has pullbacks

▶ We write C→ for the arrow category of C whose objects are
morphisms x → y in C

▶ The functor cod : C→ → C sends morphisms x → y to their
codomain y .

▶ Then cod is a fibration

p y

x y

⌟

35/44



Wait... where were we?

Let’s briefly recall where we are.

▶ We defined the notion of fibration

▶ Fibrations allow us to interpret dependent types and
substitution

▶ The motivation behind fibration comes from hyperdoctrines
and the Grothendieck construction (fiberwise representation of
functions)

▶ This is the first ingredient for defining comprehension
categories

▶ The missing part: context extension

Note: this notion is technical and hard to understand when you see
it for the first time

36/44



Comprehension Categories

Definition
A (full) comprehension category is a commuting triangle of
functors

E C→

C

χ

F cod

such that C has a terminal object [] and such that χ sends
cartesian morphisms to pullbacks and such that χ is fully faithful.

37/44



Introduction to Univalent Categories

An Introduction to Comprehension Categories

The Main Theorem

38/44



Type Formers

To state our main theorem, we need the following type formers in
comprehension categories

▶ Unit types (fiberwise terminal object)

▶ Binary product types (fiberwise products)

▶ Equalizer types (fiberwise equalizers)

▶ Dependent sums (left adjoint to substitution)

We also need democracy

39/44



Democracy

Definition
Suppose that we have the following comprehension category

E C→

C

χ

F cod

We say that it is democratic if for every context Γ : C there is a
type Γ : E over [] such that χ(Γ) ∼= Γ.

Intuitively: every context has a representative.

40/44



The Theorem

A DFL comprehension category is a comprehension category
that

▶ is democratic

▶ has unity types

▶ supports binary products

▶ supports equalizer types

▶ supports dependent sums

Theorem
We have a biequivalence between the bicategories of univalent DFL
comprehension categories and of univalent categories with finite
limits.

41/44



Extensions

We extended this to:

▶ locally Cartesian closed categories (
∏
-types)

▶ extensive categories (disjoint sum types)

▶ exact categories (quotient types)

▶ pretoposes (quotient types and disjoint sum types)

▶
∏
-pretoposes (pretopos with

∏
-types)

▶ elementary toposes (
∏
-pretoposes with subobject classifier

types)

42/44



Usage of Univalence in the Proof

There are several points where we used univalence to simplify the
proof.

▶ Transporting structure along equivalences

▶ Classifying equivalences

▶ Splitting: substitution laws hold up to isomorphism in
fibrations

43/44



Conclusion

We did:

▶ A formalization of the biequivalence between univalent
comprehension categories and locally Cartesian closed
univalent categories

▶ An extension to pretoposes,
∏
-pretoposes, and elementary

toposes

▶ The formalization is available online4

Important points:

▶ We used comprehension categories instead of categories with
families

▶ Univalence made the proof simpler

4https://github.com/UniMath/UniMath/tree/master/UniMath/

Bicategories/ComprehensionCat

44/44

https://github.com/UniMath/UniMath/tree/master/UniMath/Bicategories/ComprehensionCat
https://github.com/UniMath/UniMath/tree/master/UniMath/Bicategories/ComprehensionCat

	Introduction to Univalent Categories
	An Introduction to Comprehension Categories
	The Main Theorem

