Library UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUniv
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBuilders.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.CatWithOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseInCat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseDispBicat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.UniverseType.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatWithUniv.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivActions.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivCell.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivIdent.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivComp.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Local Open Scope cat.
Local Open Scope comp_cat.
Definition dfl_comp_cat_to_finlim_disp_psfunctor_universe
: disp_psfunctor
disp_bicat_dfl_full_comp_cat_with_univ
disp_bicat_finlim_universe
dfl_comp_cat_to_finlim_psfunctor.
Show proof.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBuilders.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.CatWithOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseInCat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseDispBicat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.UniverseType.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatWithUniv.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivActions.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivCell.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivIdent.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivComp.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Local Open Scope cat.
Local Open Scope comp_cat.
Definition dfl_comp_cat_to_finlim_disp_psfunctor_universe
: disp_psfunctor
disp_bicat_dfl_full_comp_cat_with_univ
disp_bicat_finlim_universe
dfl_comp_cat_to_finlim_psfunctor.
Show proof.
use make_disp_psfunctor.
- exact disp_2cells_isaprop_disp_bicat_finlim_universe.
- exact disp_locally_groupoid_disp_bicat_finlim_universe.
- intros C u.
exact (dfl_full_comp_cat_to_finlim_ob (pr1 u)
,,
dfl_full_comp_cat_to_finlim_stable_el_map_coherent (pr1 u) (pr2 u)).
- intros C₁ C₂ F u₁ u₂ Fu.
exact (dfl_full_comp_cat_functor_preserves_ob F (pr1 Fu)
,,
dfl_full_comp_cat_functor_preserves_el F (pr1 Fu) (pr2 Fu)).
- intros C₁ C₂ F G τ u₁ u₂ Fu₁ Gu₂ τu.
simple refine (_ ,, _).
+ exact (dfl_full_comp_cat_to_nat_trans_ob τ (pr1 τu)).
+ exact (dfl_full_comp_cat_to_nat_trans_preserves_el τ (pr1 τu) (pr2 τu)).
- intros C u.
simple refine (_ ,, _).
+ exact (dfl_functor_comp_cat_to_finlim_univ_identitor_ob (pr1 u) _).
+ exact (dfl_functor_comp_cat_to_finlim_univ_identitor_preserves_el (pr1 u) (pr2 u)).
- intros C₁ C₂ C₃ F G u₁ u₂ u₃ Fu Gu.
simple refine (_ ,, _).
+ exact (dfl_functor_comp_cat_to_finlim_univ_compositor_ob (pr1 Fu) (pr1 Gu)).
+ exact (dfl_functor_comp_cat_to_finlim_univ_compositor_preserves_el
(pr1 Fu) (pr1 Gu)
(pr2 Fu) (pr2 Gu)).
- exact disp_2cells_isaprop_disp_bicat_finlim_universe.
- exact disp_locally_groupoid_disp_bicat_finlim_universe.
- intros C u.
exact (dfl_full_comp_cat_to_finlim_ob (pr1 u)
,,
dfl_full_comp_cat_to_finlim_stable_el_map_coherent (pr1 u) (pr2 u)).
- intros C₁ C₂ F u₁ u₂ Fu.
exact (dfl_full_comp_cat_functor_preserves_ob F (pr1 Fu)
,,
dfl_full_comp_cat_functor_preserves_el F (pr1 Fu) (pr2 Fu)).
- intros C₁ C₂ F G τ u₁ u₂ Fu₁ Gu₂ τu.
simple refine (_ ,, _).
+ exact (dfl_full_comp_cat_to_nat_trans_ob τ (pr1 τu)).
+ exact (dfl_full_comp_cat_to_nat_trans_preserves_el τ (pr1 τu) (pr2 τu)).
- intros C u.
simple refine (_ ,, _).
+ exact (dfl_functor_comp_cat_to_finlim_univ_identitor_ob (pr1 u) _).
+ exact (dfl_functor_comp_cat_to_finlim_univ_identitor_preserves_el (pr1 u) (pr2 u)).
- intros C₁ C₂ C₃ F G u₁ u₂ u₃ Fu Gu.
simple refine (_ ,, _).
+ exact (dfl_functor_comp_cat_to_finlim_univ_compositor_ob (pr1 Fu) (pr1 Gu)).
+ exact (dfl_functor_comp_cat_to_finlim_univ_compositor_preserves_el
(pr1 Fu) (pr1 Gu)
(pr2 Fu) (pr2 Gu)).