Higher Inductive Types in Programming

Henning Basold, Herman Geuvers, Niels van der Weide

May 10, 2017
"A canonical type A is defined by prescribing how a canonical object of type A is formed as well as how two equal canonical objects of type A are formed. There is no limitation on this prescription except that the relation of equality which it defines between canonical objects of type A must be reflexive, symmetric and transitive. If the rules for forming canonical objects as well as equal canonical objects of a certain type are called the introduction rules for that type, we may thus say with Gentzen(1934) that a canonical type (proposition) is defined by its introduction rules."
"A canonical type A is defined by prescribing how a canonical object of type A is formed as well as how two equal canonical objects of type A are formed. There is no limitation on this prescription except that the relation of equality which it defines between canonical objects of type A must be reflexive, symmetric and transitive. If the rules for forming canonical objects as well as equal canonical objects of a certain type are called the introduction rules for that type, we may thus say with Gentzen(1934) that a canonical type (proposition) is defined by its introduction rules." Martin-Löf, Per. "Constructive mathematics and computer programming." Studies in Logic and the Foundations of Mathematics 104 (1982): 153-175.
" A canonical type A is defined by prescribing how a canonical object of type A is formed as well as how two equal canonical objects of type A are formed. There is no limitation on this prescription except that the relation of equality which it defines between canonical objects of type A must be reflexive, symmetric and transitive. If the rules for forming canonical objects as well as equal canonical objects of a certain type are called the introduction rules for that type, we may thus say with Gentzen(1934) that a canonical type (proposition) is defined by its introduction rules." Martin-Löf, Per. "Constructive mathematics and computer programming." Studies in Logic and the Foundations of Mathematics 104 (1982): 153-175.

Higher Inductive Types

Higher inductive type (HIT): generated by inductive point constructors and path constructors.
Canonical types in Martin-Löf's sense corresponds with higher inductive types in HoTT.

Goal

Define HITs formally and illustrate the definition with examples.

Related Work

- Running Circles Around (In) Your Proof Assistant; or, Quotients that Compute (Licata)
- Higher Inductive Types in Programming (Basold, Geuvers, Van der Weide)
- Type Theory in Type Theory with Quotient Inductive Types (Altenkirch, Kaposi)
- Higher Inductive Types in the Groupoid Model (Dybjer, Moeneclaey)
- The HoTT Library: A Formalization of Homotopy Type Theory in Coq (Bauer, Gross, Lumsdaine, Shulman, Sozeau, Spitters)

Syntax of HITs

For a higher inductive type, we want to add equations like

$$
\prod x: A, t=r
$$

With t and r 'canonical terms'.

Syntax of HITs

For a higher inductive type, we want to add equations like

$$
\prod x: A, t=r
$$

With t and r 'canonical terms'.
This means the scheme looks something like

$$
\text { Inductive } T\left(B_{1}: \text { TYPE }\right) \ldots\left(B_{\ell}: \text { TYPE }\right):=
$$

$$
\mid c_{1}: H_{1}\left[T B_{1} \cdots B_{\ell}\right] \rightarrow T B_{1} \cdots B_{\ell}
$$

$\mid c_{k}: H_{k}\left[T B_{1} \cdots B_{\ell}\right] \rightarrow T B_{1} \cdots B_{\ell}$

$$
p_{1}: \prod\left(x: A_{1}\left[T B_{1} \cdots B_{\ell}\right]\right), t_{1}=r_{1}
$$

$p_{n}: \prod\left(x: A_{n}\left[T B_{1} \cdots B_{\ell}\right]\right), t_{n}=r_{n}$

Constructor Terms

We start with:

- We have context Γ;
- We have $c_{i}: H_{i}(T) \rightarrow T$ (given by inductive type);
- We have a parameter $x: A[T]$ with A polynomial functor.

Building Constructor Terms

$$
\frac{\Gamma \vdash t: B \quad}{} \quad T \text { does not occur in } B \quad x: A \Vdash t: B \quad x: A \Vdash x: A
$$

Building Constructor Terms

$$
\begin{array}{cc}
\lceil\vdash t: B & T \text { does not occur in } B \\
& x: A \Vdash t: B \\
& \frac{j \in\{1,2\} \quad x: A \Vdash r: G_{1} \times G_{2}}{x: A \Vdash \pi_{j} r: G_{j}} \\
& \frac{j=\{1,2\} \quad x: A \Vdash r_{j}: G_{j}}{x: A \Vdash\left(r_{1}, r_{2}\right): G_{1} \times G_{2}}
\end{array}
$$

Building Constructor Terms

$$
\begin{array}{cc}
\qquad \begin{array}{rl}
\Gamma \vdash t: B & T \text { does not occur in } B \\
x: A \Vdash t: B \\
& \frac{j \in\{1,2\} \quad x: A \Vdash r: G_{1} \times G_{2}}{x: A \Vdash \pi_{j} r: G_{j}} \\
& \frac{j=\{1,2\} \quad x: A \Vdash r_{j}: G_{j}}{x: A \Vdash\left(r_{1}, r_{2}\right): G_{1} \times G_{2}} \\
& \frac{j \in\{1,2\} \quad x: A \Vdash r: G_{j}}{x: A \Vdash \mathrm{in}_{j} r: G_{1}+G_{2}}
\end{array}
\end{array}
$$

Building Constructor Terms

$$
\begin{array}{cc}
\Gamma \vdash t: B \quad & T \text { does not occur in } B \\
& x: A \Vdash t: B \\
\frac{j \in\{1,2\} \quad x: A \Vdash r: G_{1} \times G_{2}}{x: A \Vdash \pi_{j} r: G_{j}} \\
\frac{j=\{1,2\} \quad x: A \Vdash r_{j}: G_{j}}{x: A \Vdash\left(r_{1}, r_{2}\right): G_{1} \times G_{2}} \\
\frac{j \in\{1,2\} \quad x: A \Vdash r: G_{j}}{x: A \Vdash \operatorname{in}_{j} r: G_{1}+G_{2}} \\
\frac{x: A \Vdash r: H_{i}[T]}{x: A \Vdash c_{i} r: T}
\end{array}
$$

The Scheme

$$
\begin{aligned}
& \text { Inductive } T\left(B_{1}: \text { TYPE }\right) \ldots\left(B_{\ell}: \text { TYPE }\right):= \\
& \mid c_{1}: H_{1}\left[T B_{1} \cdots B_{\ell}\right] \rightarrow T B_{1} \cdots B_{\ell} \\
& \cdots \\
& \mid c_{k}: H_{k}\left[T B_{1} \cdots B_{\ell}\right] \rightarrow T B_{1} \cdots B_{\ell} \\
& \mid p_{1}: \prod\left(x: A_{1}\left[T B_{1} \cdots B_{\ell}\right]\right), t_{1}=r_{1} \\
& \cdots \\
& \mid p_{n}: \prod\left(x: A_{n}\left[T B_{1} \cdots B_{\ell}\right]\right), t_{n}=r_{n}
\end{aligned}
$$

Here we have

- H_{i} and A_{j} are polynomials;
- t_{j} and r_{j} are constructor terms over c_{1}, \ldots, c_{k} with $x: A_{j} \Vdash t_{j}, r_{j}: T$.
Note: all HITs in this talk are finitary. Also, only 1-HITs.

Introduction Rules

$$
\begin{gathered}
\Gamma \vdash B_{1}: \text { TyPE } \cdots \quad \Gamma \vdash B_{\ell}: \text { TYPE } \\
\Gamma \vdash T B_{1} \cdots B_{\ell}: \text { TYPE } \\
\frac{\vdash \Gamma \quad \text { CTX }}{\Gamma \vdash c_{i}: H_{i}[T] \rightarrow T} \\
\frac{\vdash \Gamma \quad \mathrm{CTX}}{\Gamma \vdash p_{j}: \prod\left(x: A_{j}[T]\right) \rightarrow t_{j}=r_{j}}
\end{gathered}
$$

Lifting Constructor Terms

To lift a constructor term $x: A[T] \Vdash r: G[T]$, we need:

- Constructors $c_{i}: H_{i}[X] \rightarrow X$;
- A type family $Y: T \rightarrow$ TYPE;
- Terms $\Gamma \vdash f_{i}: \Pi\left(x: H_{i}[T]\right), \bar{H}_{i}(Y) x \rightarrow Y\left(c_{i} x\right)$.

Lifting Constructor Terms

To lift a constructor term $x: A[T] \Vdash r: G[T]$, we need:

- Constructors $c_{i}: H_{i}[X] \rightarrow X$;
- A type family $Y: T \rightarrow$ TYpe;
- Terms $\Gamma \vdash f_{i}: \Pi\left(x: H_{i}[T]\right), \bar{H}_{i}(Y) x \rightarrow Y\left(c_{i} x\right)$.

Then we define

$$
\Gamma, x: A[T], h_{x}: \bar{A}(Y) x \vdash \hat{r}: \bar{G}(Y) r
$$

Lifting Constructor Terms

To lift a constructor term $x: A[T] \Vdash r: G[T]$, we need:

- Constructors $c_{i}: H_{i}[X] \rightarrow X$;
- A type family $Y: T \rightarrow$ Type;
- Terms $\Gamma \vdash f_{i}: \Pi\left(x: H_{i}[T]\right), \bar{H}_{i}(Y) x \rightarrow Y\left(c_{i} x\right)$.

Then we define

$$
\Gamma, x: A[T], h_{x}: \bar{A}(Y) x \vdash \widehat{r}: \bar{G}(Y) r
$$

by induction as follows

$$
\begin{array}{rlrl}
\widehat{t} & =t & \widehat{x}: & =h_{x} \\
\widehat{\pi_{j} r} & :=\pi_{j} \widehat{r} & \widehat{c_{i} r}: & =f_{i} r \hat{r} \\
\left.r_{1}, r_{2}\right) & :=\left(\widehat{r_{1}}, \widehat{r_{2}}\right) & \widehat{\mathrm{n}_{j} r}:=\widehat{r}
\end{array}
$$

Elimination Rule

$$
\begin{gathered}
Y: T \rightarrow \text { TYPE } \\
\Gamma \vdash f_{i}: \Pi\left(x: H_{i}[T]\right), \bar{H}_{i}(Y) x \rightarrow Y\left(c_{i} x\right) \\
\Gamma \vdash q_{j}: \Pi\left(x: A_{j}[T]\right)\left(h_{x}: \bar{A}_{j}(Y) x\right), \widehat{t}_{j}={ }_{\left(p_{j} x\right)}^{Y} \widehat{r}_{j} \\
\Gamma \vdash \operatorname{Tind}\left(f_{1}, \ldots, f_{k}, q_{1}, \ldots, q_{n}\right): \Pi(x: T), Y x
\end{gathered}
$$

Note that \widehat{t}_{j} and \widehat{r}_{j} depend on all the f_{i}.

Elimination Rule

$$
\begin{gathered}
Y: T \rightarrow \text { TYPE } \\
\Gamma \vdash f_{i}: \Pi\left(x: H_{i}[T]\right), \bar{H}_{i}(Y) x \rightarrow Y\left(c_{i} x\right) \\
\Gamma \vdash q_{j}: \Pi\left(x: A_{j}[T]\right)\left(h_{x}: \bar{A}_{j}(Y) x\right), \widehat{t}_{j}={ }_{\left(p_{j} x\right)}^{Y} \widehat{r}_{j} \\
\Gamma \vdash \operatorname{Tind}\left(f_{1}, \ldots, f_{k}, q_{1}, \ldots, q_{n}\right): \Pi(x: T), Y x
\end{gathered}
$$

Note that \widehat{t}_{j} and \widehat{r}_{j} depend on all the f_{i}.

Computation Rules

$$
\begin{gathered}
T \text { ind }\left(c_{i} t\right)=f_{i} t\left(\bar{H}_{i}(T \text { ind }) t\right), \\
\text { apD } T \text { ind } p_{j} a=q_{j} a\left(\bar{A}_{j}(T \text { ind }) a\right) .
\end{gathered}
$$

HITs in Proof Assistants

How to program HITs in Coq/Agda?
Idea: add paths as axioms/postulates.

The Interval (Naively)

For the interval
Inductive $I^{1}:=$
| z: I^{1}
$0: I^{1}$
$s: z=0$
we add the code
data I: Set where
z: I
o : I
postulate
seg: $z==0$

The Interval (Naively)

Problem: we can do too much.
f: I \rightarrow Nat
f $z=0$
$\mathrm{f} \circ=1$
Then we have ap f seg : $0=1$.
This should not be possible.

The Interval (Correctly)

Solution: restrict access.

```
private
data I': Set where
Zero: I'
One : I'
```

I : Set
$\mathrm{I}=\mathrm{I}^{\prime}$
z: I
z $=$ Zero
o : I
$o=$ One

HITs in Proof Assistants: Elimination Rule

How to get the right elimination rule?

Elimination Rule (Naively)

We can try to postulate it.

postulate

$$
\begin{aligned}
& \mathrm{I}-\mathrm{rec}:\{\mathrm{C}: \operatorname{Set}\} \rightarrow(\mathrm{ab}: C) \rightarrow(\mathrm{p}: \mathrm{a}==\mathrm{b}) \\
& \quad \rightarrow \mathrm{I} \rightarrow \mathrm{C}
\end{aligned}
$$

Elimination Rule (Naively)

We can try to postulate it.

postulate

$$
\begin{aligned}
& \text { I-rec }:\{C: \operatorname{Set}\} \rightarrow(\mathrm{a} \mathrm{~b}: C) \rightarrow(\mathrm{p}: \mathrm{a}==\mathrm{b}) \\
& \quad \rightarrow \mathrm{I} \rightarrow \mathrm{C}
\end{aligned}
$$

Problem: computation rules for points hold propositionally.

Elimination Rule (Better)

Define it as a function.

$$
\begin{aligned}
& \text { I-rec }:\{\mathrm{C}: \operatorname{Set}\} \rightarrow(\mathrm{ab}: C) \rightarrow(\mathrm{p}: \mathrm{a}==\mathrm{b}) \\
& \rightarrow \mathrm{I} \rightarrow \mathrm{C} \\
& \text { I-rec ab_Zero = a } \\
& \text { I-rec ab_One = b }
\end{aligned}
$$

Now computation rules for points are definitional. This is how Licata did it.

HITs in Proof Assistants: Elimination Rule (Better)

Problem: define
Inductive C : Set :=
$N: C$
$S: C$
$E: N=S$
$W: N=S$

Define

$$
\begin{gathered}
f=l \text { ind } N S E \\
g=l \text { ind } N S W
\end{gathered}
$$

HITs in Proof Assistants: Elimination Rule (Better)

Problem: define
Inductive C : Set :=
$N: C$
$S: C$
$E: N=S$
$W: N=S$

Define

$$
\begin{gathered}
f=l \text { ind } N S E \\
g=l \text { ind } N S W
\end{gathered}
$$

Then

$$
f=g
$$

by refl!

HITs in Proof Assistants: Elimination Rule (Even Better)

In Coq (workaround in Agda is more annoying).
Definition I-rec (C : Type) (a, b:C) (p : a = b) : I $\rightarrow \mathrm{C}:=$
:= fun $x \Rightarrow$
(match x return ${ }_{\mathrm{H}} \rightarrow \mathrm{C}$ with zero \Rightarrow fun _ $\Rightarrow a$ one \Rightarrow fun _ $\Rightarrow \mathrm{b}$
) p .
This is solution in the HoTT library in Coq.

HITs in Proof Assistants: Computation Rules for Paths

Postulating them works fine.
postulate

$$
\begin{aligned}
& \beta \text { seg }:\{C: \operatorname{Set}\} \rightarrow(\mathrm{ab}: C) \rightarrow(p: a==b) \\
& \quad \rightarrow \text { ap }(I-\text { rec a b p) seg }==p
\end{aligned}
$$

Now computation rules for points are definitional.

Some Examples of HITs

- Integers modulo n
- Finite Sets (free lattice)
- Lists (free monoid)
- Integers
- Expressions with + and natural numbers
- Combinatory logic (K and S)
- Type Theory

Integers as a HIT

Let's define the integers.
Inductive \mathbb{Z} ? :=
$0: \mathbb{Z}$?
$S: \mathbb{Z} ? \rightarrow \mathbb{Z}$?
$P: \mathbb{Z} ? \rightarrow \mathbb{Z}$?
$i_{1}: \prod(x: \mathbb{Z} ?), S(P x)=x$
$i_{2}: \prod(x: \mathbb{Z} ?), P(S x)=x$

Integers as a HIT

Let's define the integers.
Inductive \mathbb{Z} ? :=
$0: \mathbb{Z}$?
$S: \mathbb{Z} ? \rightarrow \mathbb{Z} ?$
$P: \mathbb{Z} ? \rightarrow \mathbb{Z}$?
$i_{1}: \prod(x: \mathbb{Z} ?), S(P x)=x$
$i_{2}: \prod(x: \mathbb{Z} ?), P(S x)=x$
Is this right?

Integers as a HIT

Let's define the integers.
Inductive \mathbb{Z} ? :=
$0: \mathbb{Z}$?
$S: \mathbb{Z} ? \rightarrow \mathbb{Z}$?
$P: \mathbb{Z} ? \rightarrow \mathbb{Z}$?
$i_{1}: \prod(x: \mathbb{Z} ?), S(P x)=x$
$i_{2}: \prod(x: \mathbb{Z} ?), P(S x)=x$
Is this right? No!

Integers as a HIT

Theorem
Equality of \mathbb{Z} ? is not decidable.
Sketch of proof:

- Hedberg: if equality of a type T is decidable, then T is a set.
- Sufficient: \mathbb{Z} ? is not a set.

\mathbb{Z} ? is not a set

Consider:

$$
\begin{gathered}
i_{2} 0: S(P Z)=0 \\
\text { ap } P\left(i_{2} 0\right): P(S(P Z))=P 0
\end{gathered}
$$

\mathbb{Z} ? is not a set

Consider:

$$
\begin{gathered}
i_{2} 0: S(P Z)=0 \\
\text { ap } P\left(i_{2} 0\right): P(S(P Z))=P 0 \\
i_{1}(P Z): P(S(P Z))=P 0
\end{gathered}
$$

Claim: ap $P\left(i_{2} 0\right): P(S(P Z))=P 0$ and $i_{1}(P Z): P(S(P Z))=P 0$ are not equal (assuming univalence).

Brief Intermezzo: the Circle

Recall the circle.
Inductive $S^{1}:=$
$b: S^{1}$
l: $b=b$
Then with univalence: I and refl are unequal.

\mathbb{Z} ? is not a set

Define $\mathbb{Z} \rightarrow S^{1}$ as follows

- 0 goes to b.
- P and S go to identity.
- $i_{1} \times$ goes to l.
- $i_{2} \times$ goes to refl.

Then $i_{1}(P Z)$ is mapped to I, but ap $P\left(i_{2} 0\right)$ to refl.

Rule of Thumb

Truncate if you don't need higher structure.
Inductive $\mathbb{Z}:=$
$0: \mathbb{Z}$
$S: \mathbb{Z} \rightarrow \mathbb{Z}$
$P: \mathbb{Z} \rightarrow \mathbb{Z}$
$i_{1}: \Pi(x: \mathbb{Z}), S(P x)=x$
$i_{2}: \Pi(x: \mathbb{Z}), P(S x)=x$
$t: \Pi(x, y: \mathbb{Z})(p, q: x=y), p=q$

Integers Modulo 2

Example in similar spirit.
Inductive $\mathbb{N} / 2 \mathbb{N}:=$
$0: \mathbb{N} / 2 \mathbb{N}$
$S: \mathbb{N} / 2 \mathbb{N} \rightarrow \mathbb{N} / 2 \mathbb{N}$
$m: \Pi(n: \mathbb{N} / 2 \mathbb{N}), S(S n)=n$
$t: \Pi(x, y: \mathbb{N} / 2 \mathbb{N})(p, q: x=y), p=q$
Finite sets as free lattice, lists as free monoid.
Interesting: can we generalize this definition to arbitrary n ?

Expressions with + and \mathbb{N} as a HIT

Let's define the expressions.
Inductive Exp:=
\mid val: $\mathbb{N} \rightarrow \operatorname{Exp}$
plus: $\operatorname{Exp} \rightarrow \operatorname{Exp} \rightarrow \operatorname{Exp}$
eval : $\Pi(n, m: \mathbb{N})$, plus $($ val $n)($ val $m)=\operatorname{val}(n+m)$
Examples in a similar spirit: type theory in type theory, combinatory logic.

Normalization of Expressions

With this definition we can define

$$
\text { norm }: \prod(e: \operatorname{Exp}) \sum(n: \mathbb{N}), \| e=\text { val } n \|
$$

where

```
Inductive |A||:=
\iota:A->|A|
    t:\prod(x,y:|A|),x=y
```


Semantics of Expressions

With this definition we can define

$$
\operatorname{sem}_{S^{1}}: \operatorname{Exp} \rightarrow b=b
$$

sending val n to I^{n} and plus to path concatenation.

Questions

- Can we make a good library for integers modulo 2? And integers?
- Can we define Scott's graph model, and show it is a model of combinatory logic using HITs?
- Simple imperative languages as a HIT?

