
Higher Inductive Types in Programming

Henning Basold, Herman Geuvers, Niels van der Weide

May 10, 2017

1/35

“A canonical type A is defined by prescribing how a canonical
object of type A is formed as well as how two equal canonical
objects of type A are formed. There is no limitation on this
prescription except that the relation of equality which it defines
between canonical objects of type A must be reflexive, symmetric
and transitive. If the rules for forming canonical objects as well as
equal canonical objects of a certain type are called the introduction
rules for that type, we may thus say with Gentzen(1934) that a
canonical type (proposition) is defined by its introduction rules.”

Martin-Löf, Per. ”Constructive mathematics and computer
programming.” Studies in Logic and the Foundations of
Mathematics 104 (1982): 153-175.

2/35

“A canonical type A is defined by prescribing how a canonical
object of type A is formed as well as how two equal canonical
objects of type A are formed. There is no limitation on this
prescription except that the relation of equality which it defines
between canonical objects of type A must be reflexive, symmetric
and transitive. If the rules for forming canonical objects as well as
equal canonical objects of a certain type are called the introduction
rules for that type, we may thus say with Gentzen(1934) that a
canonical type (proposition) is defined by its introduction rules.”
Martin-Löf, Per. ”Constructive mathematics and computer
programming.” Studies in Logic and the Foundations of
Mathematics 104 (1982): 153-175.

2/35

“A canonical type A is defined by prescribing how a canonical
object of type A is formed as well as how two equal canonical
objects of type A are formed. There is no limitation on this
prescription except that the relation of equality which it defines
between canonical objects of type A must be reflexive, symmetric
and transitive. If the rules for forming canonical objects as well as
equal canonical objects of a certain type are called the introduction
rules for that type, we may thus say with Gentzen(1934) that a
canonical type (proposition) is defined by its introduction rules.”
Martin-Löf, Per. ”Constructive mathematics and computer
programming.” Studies in Logic and the Foundations of
Mathematics 104 (1982): 153-175.

2/35

Higher Inductive Types

Higher inductive type (HIT): generated by inductive point
constructors and path constructors.
Canonical types in Martin-Löf’s sense corresponds with higher
inductive types in HoTT.

3/35

Goal

Define HITs formally and illustrate the definition with examples.

4/35

Related Work

I Running Circles Around (In) Your Proof Assistant; or,
Quotients that Compute (Licata)

I Higher Inductive Types in Programming (Basold, Geuvers,
Van der Weide)

I Type Theory in Type Theory with Quotient Inductive Types
(Altenkirch, Kaposi)

I Higher Inductive Types in the Groupoid Model (Dybjer,
Moeneclaey)

I The HoTT Library: A Formalization of Homotopy Type
Theory in Coq (Bauer, Gross, Lumsdaine, Shulman, Sozeau,
Spitters)

5/35

Syntax of HITs

For a higher inductive type, we want to add equations like∏
x : A, t = r

With t and r ‘canonical terms’.

This means the scheme looks something like

Inductive T (B1 : Type) . . . (B` : Type) :=
| c1 : H1[T B1 · · ·B`]→ T B1 · · ·B`

. . .
| ck : Hk [T B1 · · ·B`]→ T B1 · · ·B`

| p1 :
∏

(x : A1[T B1 · · ·B`]), t1 = r1
. . .
| pn :

∏
(x : An[T B1 · · ·B`]), tn = rn

6/35

Syntax of HITs

For a higher inductive type, we want to add equations like∏
x : A, t = r

With t and r ‘canonical terms’.
This means the scheme looks something like

Inductive T (B1 : Type) . . . (B` : Type) :=
| c1 : H1[T B1 · · ·B`]→ T B1 · · ·B`

. . .
| ck : Hk [T B1 · · ·B`]→ T B1 · · ·B`

| p1 :
∏

(x : A1[T B1 · · ·B`]), t1 = r1
. . .
| pn :

∏
(x : An[T B1 · · ·B`]), tn = rn

6/35

Constructor Terms

We start with:

I We have context Γ;

I We have ci : Hi (T)→ T (given by inductive type);

I We have a parameter x : A[T] with A polynomial functor.

7/35

Building Constructor Terms

Γ ` t : B T does not occur in B
x : A t : B x : A x : A

j ∈ {1, 2} x : A r : G1 × G2

x : A πj r : Gj

j = {1, 2} x : A rj : Gj

x : A (r1, r2) : G1 × G2

j ∈ {1, 2} x : A r : Gj

x : A inj r : G1 + G2

x : A r : Hi [T]

x : A ci r : T

8/35

Building Constructor Terms

Γ ` t : B T does not occur in B
x : A t : B x : A x : A

j ∈ {1, 2} x : A r : G1 × G2

x : A πj r : Gj

j = {1, 2} x : A rj : Gj

x : A (r1, r2) : G1 × G2

j ∈ {1, 2} x : A r : Gj

x : A inj r : G1 + G2

x : A r : Hi [T]

x : A ci r : T

8/35

Building Constructor Terms

Γ ` t : B T does not occur in B
x : A t : B x : A x : A

j ∈ {1, 2} x : A r : G1 × G2

x : A πj r : Gj

j = {1, 2} x : A rj : Gj

x : A (r1, r2) : G1 × G2

j ∈ {1, 2} x : A r : Gj

x : A inj r : G1 + G2

x : A r : Hi [T]

x : A ci r : T

8/35

Building Constructor Terms

Γ ` t : B T does not occur in B
x : A t : B x : A x : A

j ∈ {1, 2} x : A r : G1 × G2

x : A πj r : Gj

j = {1, 2} x : A rj : Gj

x : A (r1, r2) : G1 × G2

j ∈ {1, 2} x : A r : Gj

x : A inj r : G1 + G2

x : A r : Hi [T]

x : A ci r : T

8/35

The Scheme

Inductive T (B1 : Type) . . . (B` : Type) :=
| c1 : H1[T B1 · · ·B`]→ T B1 · · ·B`

. . .
| ck : Hk [T B1 · · ·B`]→ T B1 · · ·B`

| p1 :
∏

(x : A1[T B1 · · ·B`]), t1 = r1
. . .
| pn :

∏
(x : An[T B1 · · ·B`]), tn = rn

Here we have

I Hi and Aj are polynomials;

I tj and rj are constructor terms over c1, . . . , ck with
x : Aj tj , rj : T .

Note: all HITs in this talk are finitary. Also, only 1-HITs.

9/35

Introduction Rules

Γ ` B1 : Type · · · Γ ` B` : Type

Γ ` T B1 · · ·B` : Type

` Γ Ctx
Γ ` ci : Hi [T]→ T

` Γ Ctx
Γ ` pj :

∏
(x : Aj [T])→ tj = rj

10/35

Lifting Constructor Terms

To lift a constructor term x : A[T] r : G [T], we need:

I Constructors ci : Hi [X]→ X ;

I A type family Y : T → Type;

I Terms Γ ` fi :
∏

(x : Hi [T]),H i (Y) x → Y (ci x).

Then we define

Γ, x : A[T], hx : A(Y) x ` r̂ : G (Y) r

by induction as follows

t̂ := t x̂ := hx ĉi r := fi r r̂

π̂j r := πj r̂ (̂r1, r2) := (r̂1, r̂2) înj r := r̂

11/35

Lifting Constructor Terms

To lift a constructor term x : A[T] r : G [T], we need:

I Constructors ci : Hi [X]→ X ;

I A type family Y : T → Type;

I Terms Γ ` fi :
∏

(x : Hi [T]),H i (Y) x → Y (ci x).

Then we define

Γ, x : A[T], hx : A(Y) x ` r̂ : G (Y) r

by induction as follows

t̂ := t x̂ := hx ĉi r := fi r r̂

π̂j r := πj r̂ (̂r1, r2) := (r̂1, r̂2) înj r := r̂

11/35

Lifting Constructor Terms

To lift a constructor term x : A[T] r : G [T], we need:

I Constructors ci : Hi [X]→ X ;

I A type family Y : T → Type;

I Terms Γ ` fi :
∏

(x : Hi [T]),H i (Y) x → Y (ci x).

Then we define

Γ, x : A[T], hx : A(Y) x ` r̂ : G (Y) r

by induction as follows

t̂ := t x̂ := hx ĉi r := fi r r̂

π̂j r := πj r̂ (̂r1, r2) := (r̂1, r̂2) înj r := r̂

11/35

Elimination Rule

Y : T → Type

Γ ` fi :
∏

(x : Hi [T]),H i (Y) x → Y (ci x)

Γ ` qj :
∏

(x : Aj [T])(hx : Aj(Y) x), t̂j =Y
(pj x)

r̂j

Γ ` T ind(f1, . . . , fk , q1, . . . , qn) :
∏

(x : T),Y x

Note that t̂j and r̂j depend on all the fi .

12/35

Elimination Rule

Y : T → Type

Γ ` fi :
∏

(x : Hi [T]),H i (Y) x → Y (ci x)

Γ ` qj :
∏

(x : Aj [T])(hx : Aj(Y) x), t̂j =Y
(pj x)

r̂j

Γ ` T ind(f1, . . . , fk , q1, . . . , qn) :
∏

(x : T),Y x

Note that t̂j and r̂j depend on all the fi .

12/35

Computation Rules

T ind (ci t) = fi t (H i (T ind) t),

apDT ind pj a = qj a (Aj(T ind) a).

13/35

HITs in Proof Assistants

How to program HITs in Coq/Agda?
Idea: add paths as axioms/postulates.

14/35

The Interval (Naively)

For the interval

Inductive I 1 :=
| z : I 1

| o : I 1

| s : z = o

we add the code

data I : Set where

z : I

o : I

postulate

seg : z == o

15/35

The Interval (Naively)

Problem: we can do too much.

f : I → Nat

f z = 0
f o = 1

Then we have ap f seg : 0 = 1.
This should not be possible.

16/35

The Interval (Correctly)

Solution: restrict access.

private

data I’ : Set where

Zero : I’
One : I’

I : Set

I = I’

z : I

z = Zero

o : I

o = One

17/35

HITs in Proof Assistants: Elimination Rule

How to get the right elimination rule?

18/35

Elimination Rule (Naively)

We can try to postulate it.

postulate

I−rec : {C : Set} → (a b : C) → (p : a == b)
→ I → C

Problem: computation rules for points hold propositionally.

19/35

Elimination Rule (Naively)

We can try to postulate it.

postulate

I−rec : {C : Set} → (a b : C) → (p : a == b)
→ I → C

Problem: computation rules for points hold propositionally.

19/35

Elimination Rule (Better)

Define it as a function.

I−rec : {C : Set} → (a b : C) → (p : a == b)
→ I → C

I−rec a b _ Zero = a

I−rec a b _ One = b

Now computation rules for points are definitional.
This is how Licata did it.

20/35

HITs in Proof Assistants: Elimination Rule (Better)

Problem: define

Inductive C : Set :=
| N : C
| S : C
| E : N = S
| W : N = S

Define
f = I ind N S E

g = I ind N S W

Then
f = g

by refl!

21/35

HITs in Proof Assistants: Elimination Rule (Better)

Problem: define

Inductive C : Set :=
| N : C
| S : C
| E : N = S
| W : N = S

Define
f = I ind N S E

g = I ind N S W

Then
f = g

by refl!

21/35

HITs in Proof Assistants: Elimination Rule (Even Better)

In Coq (workaround in Agda is more annoying).

Definition I−rec (C : Type) (a, b : C) (p : a = b) : I → C :=
:= fun x ⇒
(match x return _ → C with

| zero ⇒ fun _ ⇒ a

| one ⇒ fun _ ⇒ b

) p.

This is solution in the HoTT library in Coq.

22/35

HITs in Proof Assistants: Computation Rules for Paths

Postulating them works fine.

postulate

βseg : {C : Set} → (a b : C) → (p : a == b)
→ ap (I−rec a b p) seg == p

Now computation rules for points are definitional.

23/35

Some Examples of HITs

I Integers modulo n

I Finite Sets (free lattice)

I Lists (free monoid)

I Integers

I Expressions with + and natural numbers

I Combinatory logic (K and S)

I Type Theory

24/35

Integers as a HIT

Let’s define the integers.

Inductive Z? :=
| 0 : Z?
| S : Z?→ Z?
| P : Z?→ Z?
| i1 :

∏
(x : Z?),S(P x) = x

| i2 :
∏

(x : Z?),P(S x) = x

Is this right? No!

25/35

Integers as a HIT

Let’s define the integers.

Inductive Z? :=
| 0 : Z?
| S : Z?→ Z?
| P : Z?→ Z?
| i1 :

∏
(x : Z?),S(P x) = x

| i2 :
∏

(x : Z?),P(S x) = x

Is this right?

No!

25/35

Integers as a HIT

Let’s define the integers.

Inductive Z? :=
| 0 : Z?
| S : Z?→ Z?
| P : Z?→ Z?
| i1 :

∏
(x : Z?),S(P x) = x

| i2 :
∏

(x : Z?),P(S x) = x

Is this right? No!

25/35

Integers as a HIT

Theorem
Equality of Z? is not decidable.

Sketch of proof:

I Hedberg: if equality of a type T is decidable, then T is a set.

I Sufficient: Z? is not a set.

26/35

Z? is not a set

Consider:
i2 0 : S(P Z) = 0,

ap P (i2 0) : P(S(P Z)) = P 0,

i1(P Z) : P(S(P Z)) = P 0.

Claim: ap P (i2 0) : P(S(P Z)) = P 0 and
i1(P Z) : P(S(P Z)) = P 0 are not equal (assuming univalence).

27/35

Z? is not a set

Consider:
i2 0 : S(P Z) = 0,

ap P (i2 0) : P(S(P Z)) = P 0,

i1(P Z) : P(S(P Z)) = P 0.

Claim: ap P (i2 0) : P(S(P Z)) = P 0 and
i1(P Z) : P(S(P Z)) = P 0 are not equal (assuming univalence).

27/35

Brief Intermezzo: the Circle

Recall the circle.

Inductive S1 :=
| b : S1

| l : b = b

Then with univalence: l and refl are unequal.

28/35

Z? is not a set

Define Z→ S1 as follows

I 0 goes to b.

I P and S go to identity.

I i1 x goes to l .

I i2 x goes to refl.

Then i1(P Z) is mapped to l , but ap P (i2 0) to refl.

29/35

Rule of Thumb

Truncate if you don’t need higher structure.

Inductive Z :=
| 0 : Z
| S : Z→ Z
| P : Z→ Z
| i1 :

∏
(x : Z),S(P x) = x

| i2 :
∏

(x : Z),P(S x) = x
| t :

∏
(x , y : Z)(p, q : x = y), p = q

30/35

Integers Modulo 2

Example in similar spirit.

Inductive N/2N :=
| 0 : N/2N
| S : N/2N→ N/2N
| m :

∏
(n : N/2N),S(S n) = n

| t :
∏

(x , y : N/2N)(p, q : x = y), p = q

Finite sets as free lattice, lists as free monoid.
Interesting: can we generalize this definition to arbitrary n?

31/35

Expressions with + and N as a HIT

Let’s define the expressions.

Inductive Exp:=
| val : N→ Exp
| plus : Exp→ Exp→ Exp
| eval :

∏
(n,m : N), plus(val n)(val m) = val(n + m)

Examples in a similar spirit: type theory in type theory,
combinatory logic.

32/35

Normalization of Expressions

With this definition we can define

norm :
∏

(e : Exp)
∑

(n : N), ||e = val n||

where

Inductive ||A|| :=
| ι : A→ ||A||
| t :

∏
(x , y : ||A||), x = y

33/35

Semantics of Expressions

With this definition we can define

semS1 : Exp→ b = b

sending val n to ln and plus to path concatenation.

34/35

Questions

I Can we make a good library for integers modulo 2? And
integers?

I Can we define Scott’s graph model, and show it is a model of
combinatory logic using HITs?

I Simple imperative languages as a HIT?

35/35

