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Univalent Foundations

▶ Key aspect of univalent foundations: the univalence axiom

▶ The univalence axiom: isomorphism of types is the same as
equality of types

▶ The foundations of libraries like UniMath1.

1https://github.com/UniMath/UniMath
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Category Theory in Univalent Foundations

▶ In univalent foundations, we are interested in univalent
categories

▶ These are categories in which isomorphism between objects is
the same as equality between them (compare to the
univalence axiom)

▶ Semantically, this is the “right” notion.

▶ In addition, it is more convenient to work with univalent
categories.
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Overall Goal

This paper from a broader perspective:

▶ Develop category theory in univalent foundations

▶ Formalize it in a proof assistant

▶ Ultimately: also formalize applications of category theory (i.e.,
in logic or programming language theory)
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Monads

Monads are one of the key concept in category theory. A monad
on a category C is given by

▶ a functor M : C → C

▶ a natural transformation η : id ⇒ M (the unit)

▶ a natural transformation µ : M ·M ⇒ M (the multiplication)

such that certain laws hold.

Note: compare to monads in Haskell

▶ we have a type m a

▶ we have return : a → m a

▶ we have (>>=) : m a → (a → m b) → m b
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Applications of Monads

▶ Monads are important in the study of programming languages.

▶ More specifically, monads can be used to study computational
effects

Concrete applications of monads:

▶ Moggi’s computational lambda calculus

▶ The enriched effect calculus

▶ Call-by-push-value

▶ Linear logic
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The Theory of Monads

Key theorems about monads:

▶ every monad gives rise to an adjunction

▶ every adjunction gives rise to a monad

C E
F

U

There are two ways to obtain an adjunction from a monad

▶ Via Eilenberg-Moore categories

▶ Via Kleisli categories
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Kleisli categories

Let M be a monad on C.
We define the Kleisli category of M as follows

▶ Objects: objects of C

▶ Morphisms from x to y in the Kleisli category are morphisms
from x to M y in C.
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Problem!

▶ Recall that in univalent foundations, we are interested in
univalent categories (categories in which isomorphism is the
same as identity)

▶ The Kleisli category, as defined on the previous slide, is not
univalent in general.

▶ A solution has been proposed, but the relevant theorems for it
were not proven2

2Ahrens, Benedikt, Paige Randall North, Michael Shulman, and Dimitris
Tsementzis. ”The univalence principle.”
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The Formal Theory of Monads

▶ We are also interested in formalization.

▶ Monads occur in many different flavors (e.g., enriched
monads, monoidal monads, comonads)

▶ We don’t want to reprove the relevant theorem for every kind
of monad

▶ So: we need a general framework

The formal theory of monads by Street gives a general framework
for monads3

3Street, Ross. ”The formal theory of monads.”
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Goals of the Paper

▶ In the paper, we develop the formal theory of monads in
univalent foundations

▶ We instantiate this theory to various examples (e.g., the
Kleisli category)

▶ The results in the paper are formalized in Coq using the
UniMath library.
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Ingredients for the Formal Theory of Monad

There are three key ingredients in the formal theory of monads:

▶ Bicategories

▶ The bicategory of monads

▶ Eilenberg-Moore objects
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Bicategories

▶ Bicategories give an abstract setting in which one can study
category theory

▶ Many categorical notions have a bicategorical analogue

▶ We have bicategories of categories, of monoidal categories,
and of enriched categories.

Category Theory Bicategorical notion

Category Object
Functor 1-cell

Natural transformation 2-cell
Adjunction Internal adjunction

13/22



Bicategories vs 2-categories

Difference between bicategories and 2-categories:

▶ In a 2-category: for composable 1-cells f , g , h, we have
f · (g · h) = (f · g) · h

▶ In bicategory: for composable 1-cells f , g , h, we have an
isomorphism between f · (g · h) and (f · g) · h

Note:

▶ As a result, the definition of a bicategory becomes more
complicated.

▶ This is because we need to require coherences to get a
well-behaved notion.
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Bicategories vs 2-categories

Why we use bicategories:

▶ We work in univalent foundations, which is intensional.

▶ In intensional foundations, there is a difference between
propositional equality (=) and definitional equality (≡).

▶ We can replace equals by equals.

▶ If f ≡ g : then in any term, we can replace f by g directly.

▶ If p : f = g : then we need to use transport.

▶ So: for =, the proof of equality is written in the term.

▶ The laws of a 2-category are propositional equalities.

▶ As such, if we use any law, then it will be present in the term.

▶ Note: this subtlety does not come up in extensional
foundations (like ZFC)
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The Bicategory of Monads

Given a bicategory B, a monad in B consists of

▶ an object x : B

▶ a 1-cell m : x → x

▶ a 2-cell η : id ⇒ m

▶ a 2-cell m ·m ⇒ m

such that the monad laws are satisfied.

Note:

▶ We can also define the notion of a morphism between
monads and of a 2-cell between such morphisms.

▶ This gives a bicategory of monads internal to B
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Displayed Bicategories

Problem:

▶ We want to prove that the bicategory of monads is univalent.

▶ However, a direct proof is complicated

▶ This is because monads are objects with a lot of structure, so
their equality is complicated.

Solution:

▶ Break up the structure and build the bicategory of monads
step by step

▶ Tool: displayed bicategories.
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Displayed Bicategories

Basic idea of construction:

▶ We start with B

▶ First, we add a 1-cell m : x → x to the structure

▶ Afterwards, we add the unit id ⇒ m and the multiplication
m ·m ⇒ m to the structure.

▶ Then add the laws

Explanation:

▶ Instead of defining the bicategory of monads in one go, it is
defined in multiple steps

▶ In each step, one part of the structure is added

▶ This simplifies the proof that the bicategory is univalent,
because we can consider each piece of structure separately

18/22
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Eilenberg-Moore Objects

▶ We can define the notion of Eilenberg-Moore objects in
arbitrary bicategories by stating a universal property

▶ Eilenberg-Moore objects are examples of limits

▶ Usually, limits are unique up to isomorphism

▶ However, assuming univalence, limits are unique up to
equality

▶ Consequence: if some bicategory has Eilenberg-Moore objects
(not necessarily chosen), then we can choose them without
the axiom of choice.

For details: see the paper
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Kleisli Categories

▶ Note: Eilenberg-Moore objects are defined in arbitrary
bicategories

▶ Eilenberg-Moore objects in Catop: Kleisli categories

▶ We must define Kleisli category slightly differently: as a full
subcategory of the Eilenberg-Moore category

▶ Proving the universal property: Rezk completion

The relevant theorems now follow from the general framework.
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Summary: how does univalence affect the development?

Univalence affected the development in the following ways:

▶ We need to use bicategories instead of 2-categories (note that
this is already so in intensional foundations)

▶ Displayed bicategories become convenient, and the bicategory
of monads is defined in a different way

▶ Eilenberg-Moore objects are unique up to equality instead of
only up to equivalence.
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Takeaways from this talk

▶ For category theorists: univalent foundations is a nice
setting for studying category theory

▶ For type theorists: to properly study category theory in
univalent foundations, some new methods are needed (Rezk
completions)

▶ For formalizers: the formal theory of monads provides the
proper level of abstraction for formalizing monads

▶ For programming language theorists: more and more
categorical tools for programming language semantics are
formalized
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