Enriched Categories in Univalent Foundations

Niels van der Weide

22 April, 2023

What are enriched categories?

- Category: we have objects and between objects, we have a set of morphisms
- **Enriched category**: we take the previous definition, but

What are enriched categories?

- Category: we have objects and between objects, we have a set of morphisms
- Enriched category: we take the previous definition, but what if we replace set by partial order, abelian group, dcpo, or an object of an arbitrary monoidal category?
- $\ensuremath{\textbf{So}}\xspace:$ enriched categories are categories whose homsets are endowed with extra structure

Motivation

Applications in mathematics:

- Simplicial homotopy theory ¹
- Strict *n*-categories can be defined using enriched categories
- Homological algebra ²

Applications in computer science:

- Domain equations in categories ³
- Models for the computational λ -calculus ⁴
- Models for typed PCF with general recursion ⁵
- Enriched effect calculus ⁶

¹Goerss, Paul G., and John F. Jardine. Simplicial homotopy theory. ²Weibel, Charles A. An introduction to homological algebra. ³Wand, Mitchell. "Fixed-point constructions in order-enriched categories." ⁴Power, John. "Models for the computational λ -calculus." ⁵Plotkin, Gordon, and John Power. "Adequacy for algebraic effects." ⁶Egger, Jeff, Rasmus Ejlers Møgelberg, and Alex Simpson. "The enriched effect calculus: syntax and semantics." According to the title, this talk will be about enriched categories in univalent foundations.

More specifically, we discuss the following

- What is a univalent enriched category?
- The univalent bicategory of univalent enriched categories

The theorems/definitions in this talk are formalized in UniMath⁷.

⁷https://github.com/UniMath/UniMath

Goal: the univalent bicategory of univalent enriched categories

⁸Ahrens, Benedikt, and Peter LeFanu Lumsdaine. "Displayed categories. ⁹Ahrens, Benedikt, et al. "Bicategories in univalent foundations.

Goal: the univalent bicategory of univalent enriched categories **Main idea**: a univalent enriched category is a univalent category with an enrichment

⁸Ahrens, Benedikt, and Peter LeFanu Lumsdaine. "Displayed categories. ⁹Ahrens, Benedikt, et al. "Bicategories in univalent foundations.

Goal: the univalent bicategory of univalent enriched categories **Main idea**: a univalent enriched category is a univalent category with an enrichment

Technique: displayed bicategories⁸ ⁹

⁸Ahrens, Benedikt, and Peter LeFanu Lumsdaine. "Displayed categories. ⁹Ahrens, Benedikt, et al. "Bicategories in univalent foundations.

Goal: the univalent bicategory of univalent enriched categories **Main idea**: a univalent enriched category is a univalent category with an enrichment

Technique: displayed bicategories⁸ ⁹

This talk: we discuss

- Short recap: what are univalent categories
- Enrichments for categories
- Brief overview of the construction with displayed bicategories

⁸Ahrens, Benedikt, and Peter LeFanu Lumsdaine. "Displayed categories. ⁹Ahrens, Benedikt, et al. "Bicategories in univalent foundations.

Recall: Univalence for Categories

Definition

Let C be a category.

For all objects x, y, we have a map idtoiso_{x,y} : x = y → x ≅ y sending equalities to isomorphism (defined using path induction)

A category is called univalent¹⁰ if for all x, y the map idtoiso_{x,y} is an equivalence of types.

Note: I deviate from the terminology in the HoTT book where category is used for univalent precategories

¹⁰Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. "Univalent categories and the Rezk completion.

Enrichments: Definition

Suppose that we have

 \blacktriangleright A monoidal category ${\cal V}$ with unit 1 and tensor \otimes

Definition

A $\mathcal V\text{-}enrichment$ E of a category C consists of

▶ a function $E(-,-): C \to C \to V$;

Enrichments: Definition

Suppose that we have

 \blacktriangleright A monoidal category ${\cal V}$ with unit 1 and tensor \otimes

Definition

- A \mathcal{V} -enrichment E of a category C consists of
 - ▶ a function $E(-,-): C \to C \to V$;
 - for x : C a morphism Id : $\mathbb{1} \to E(x, x)$ in \mathcal{V} ;
 - for x, y, z : C a morphism Comp : E(y, z) ⊗ E(x, y) → E(y, z) in V;

Enrichments: Definition

Suppose that we have

 \blacktriangleright A monoidal category ${\cal V}$ with unit 1 and tensor \otimes

Definition

- A \mathcal{V} -enrichment E of a category C consists of
 - ▶ a function $E(-,-): C \to C \to V$;
 - for x : C a morphism Id : $\mathbb{1} \to E(x, x)$ in \mathcal{V} ;
 - for x, y, z : C a morphism Comp : E(y, z) ⊗ E(x, y) → E(y, z) in V;
 - ▶ functions FromArr : $C(x, y) \rightarrow V(1, E(x, y))$ and ToArr : $V(1, E(x, y)) \rightarrow C(x, y)$ for all x, y : C

We require the usual axioms and that FromArr and ToArr are inverses.

Enrichments: Idea

Some standard facts from enriched category theory¹¹

- ► We have 2-categories *V*Cat and Cat
- We have a pseudofunctor from VCat to Cat that sends an enriched category E to its underlying category E₀ (objects: same as in E, morphisms 1 → E(x, y))

Idea:

- ► a *V*-enrichment of C is an object in the fiber of C along this pseudofunctor.
- the definition on the previous slide formulates this idea.

¹¹Kelly, Max. Basic concepts of enriched category theory.

¹²McDermott, Dylan, and Tarmo Uustalu. "What makes a strong monad?.

Enrichments: Idea

Some standard facts from enriched category theory¹¹

- ► We have 2-categories *V*Cat and Cat
- We have a pseudofunctor from VCat to Cat that sends an enriched category E to its underlying category E₀ (objects: same as in E, morphisms 1 → E(x, y))

Idea:

- ► a *V*-enrichment of C is an object in the fiber of C along this pseudofunctor.
- the definition on the previous slide formulates this idea.
- Note: other definitions of enrichments have also been given¹²

¹¹Kelly, Max. Basic concepts of enriched category theory.

¹²McDermott, Dylan, and Tarmo Uustalu. "What makes a strong monad?.

Univalent Enriched Categories

A univalent \mathcal{V} -enriched category is a univalent category together with a \mathcal{V} -enrichment.

Univalent Enriched Categories

A univalent \mathcal{V} -enriched category is a univalent category together with a \mathcal{V} -enrichment.

Comments:

- One might wonder: should univalence interact with enrichment?
- For example, for bicategories we have a local and a global univalence condition.
- However, bicategories are instances of weak enrichments (over bicategories).
- We look at a stricter notion, namely enrichments over monoidal categories.

Overview of the construction:

- We have the bicategory UnivCat of univalent categories
- We define a displayed bicategory VUnivCat_{disp} over UnivCat whose objects over C are V-enrichments over C

Overview of the construction:

- We have the bicategory UnivCat of univalent categories
- We define a displayed bicategory VUnivCat_{disp} over UnivCat whose objects over C are V-enrichments over C
- The total bicategory of VUnivCat_{disp}, denoted by VUnivCat, is the bicategory of enriched categories

Overview of the construction:

- We have the bicategory UnivCat of univalent categories
- We define a displayed bicategory VUnivCat_{disp} over UnivCat whose objects over C are V-enrichments over C
- The total bicategory of VUnivCat_{disp}, denoted by VUnivCat, is the bicategory of enriched categories
- ▶ We prove that VUnivCat_{disp} is univalent

Overview of the construction:

- We have the bicategory UnivCat of univalent categories
- We define a displayed bicategory VUnivCat_{disp} over UnivCat whose objects over C are V-enrichments over C
- The total bicategory of VUnivCat_{disp}, denoted by VUnivCat, is the bicategory of enriched categories
- We prove that VUnivCat_{disp} is univalent

Theorem

If \mathcal{V} is univalent, then $\mathcal{V}UnivCat$ is a univalent bicategory.

Change of Base

Suppose, we have

- A lax monoidal functor $F : \mathcal{V} \to \mathcal{W}$
- A V-enriched category E

Then we define a $\mathcal W\text{-enriched}$ category $\mathsf E_F$

- ▶ The objects of E_F are objects of E
- For x, y : E we define $E_F(x, y)$ to be F(E(x, y))
- Composition and identity: from E

Change of Base and Univalence

Note:

- \blacktriangleright We have a functor $!:\mathcal{V}\rightarrow 1$ to the terminal monoidal category
- So: every V-enriched category gives rise to a 1-enriched category

Change of Base and Univalence

Note:

- \blacktriangleright We have a functor $!:\mathcal{V}\rightarrow 1$ to the terminal monoidal category
- So: every V-enriched category gives rise to a 1-enriched category

Instantiate this to Set:

- Set is Set-enriched
- We have a 1-enriched category Set!

Change of Base and Univalence

Note:

- \blacktriangleright We have a functor $!:\mathcal{V}\rightarrow 1$ to the terminal monoidal category
- So: every V-enriched category gives rise to a 1-enriched category

Instantiate this to Set:

- Set is Set-enriched
- We have a 1-enriched category Set!

What does the underlying category of Set! look like?

- Objects: sets
- Morphisms: inhabitants of unit type

This is not univalent at all.

Change of Base in our setting

Suppose, we have

▶ A fully faithful and strong monoidal functor $F : V \to W$

► A category C with a enrichment E over V

Then we define a \mathcal{W} -enrichment $E_F(x, y)$ of C

- For x, y : E we define $E_F(x, y)$ to be F(E(x, y))
- Composition and identity: from E

What's included in the formalization so far

- The univalent bicategory of univalent enriched categories
- Limits and colimits in enriched categories
- Enriched monads, and a construction of Eilenberg-Moore objects in the bicategory of enriched categories
- Various examples: self-enriched categories, change of base, the opposite
- Characterization of enrichments over structured sets

What's included in the formalization so far

- The univalent bicategory of univalent enriched categories
- Limits and colimits in enriched categories
- Enriched monads, and a construction of Eilenberg-Moore objects in the bicategory of enriched categories
- Various examples: self-enriched categories, change of base, the opposite
- Characterization of enrichments over structured sets (in the literature, often simplified definitions of enriched categories are used (eg for posets/abelian groups). We define a general notion of structured set and we characterize enrichments over structured sets via a similar simplified definition)

Conclusion

Main take-aways of this talk:

- Enriched categories are nice and useful
- Univalence for enriched categories: the underlying category is univalent
- We showed: the bicategory of univalent enriched categories is again univalent
- Some interesting peculiarities happen with univalent enriched categories (change of base)