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Abstract
In this paper, we show that all finitary 1-truncated higher

inductive types (HITs) can be constructed from the groupoid

quotient. We start by defining internally a notion of signa-

tures for HITs, and for each signature, we construct a bicate-

gory of algebras in 1-types and in groupoids. We continue

by proving initial algebra semantics for our signatures. After

that, we show that the groupoid quotient induces a biadjunc-

tion between the bicategories of algebras in 1-types and in

groupoids. We finish by constructing a biinitial object in the

bicategory of algebras in groupoids. From all this, we con-

clude that all finitary 1-truncated HITs can be constructed

from the groupoid quotient. All the results are formalized

over the UniMath library of univalent mathematics in Coq.

CCS Concepts: • Theory of computation → Type the-
ory; Constructive mathematics.

Keywords: higher inductive types, homotopy type theory,

Coq, bicategories
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1 Introduction
The Martin-Löf identity type, also known as propositional
equality, represents provable equality in type theory [52].

This type is defined polymorphically over all types and has

a single introduction rule representing reflexivity. The elim-

inator, often called the J-rule or path induction, is used to

prove symmetry and transitivity. Note that in particular, we

can talk about the identity type of an already established
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identity type. This can be iterated to obtain an infinite tower

of types, which has the structure of an∞-groupoid [50, 60].

The J-rule is also the starting point of homotopy type theory
[59]. In that setting, types are seen as spaces, inhabitants

are seen as points, proofs of identity are seen as paths, and

paths between paths are seen as homotopies. Inmathematical

terms, type theory can be interpreted in many Quillen model

categories [15], as for example simplicial sets [41]. In the

resulting model, not every inhabitant of the identity type is

equal to reflexivity, which is also the case in the groupoid

model [37, 38] and the cubical sets model [18].

If we assume enough axioms, then we can construct types

for which we can prove that not every two inhabitants of

the identity type are equal. One example is the universe if

one assumes the univalence axiom [59]. Other examples can

be obtained by using higher inductive types (HITs).
Higher inductive types generalize inductive types by al-

lowing constructors for paths, paths between paths, and so

on. While inductive types are specified by giving the arities

of the operations [27], for higher inductive types one must

also specify the arities of the paths, paths between paths, and

so on. The resulting higher inductive type is freely generated

by the provided constructors. To make this concrete, let us

look at some examples [59]:

Inductive S1 :=

| baseS1 : S1

| loopS1 : baseS1 = baseS1

Inductive T 2
:=

| base : T 2

| loopl, loopr : base = base
| surf : loopl • loopr = loopr • loopl

The first one, S1, represents the circle. It is generated by a

point constructor baseS1 : S1 and a path constructor loopS1 :

baseS1 = baseS1 . The second one, T 2
, represents the torus.

This type is generated by a point constructor base, two path

constructors loopl and loopr of type base = base, and a

homotopy constructor surf : loopl • loopr = loopr • loopl
where p • q denotes the concatenation of p and q. Note that
constructors depend on previously given constructors in the

specification. For both types, introduction, elimination, and

computation rules can be given [59].
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In this paper, we study a schema of higher inductive types

that allows defining types by giving constructors for the

points, paths, and homotopies. All of these constructors can

be recursive, but they can only have a finite number of recur-

sive arguments. Concretely, this means that every inhabitant

can be constructed as a finitely branching tree. Note that

recursion is necessary to cover examples such as the set

truncation, algebraic theories, and the integers. Such a HIT

is called finitary. A similar scheme was studied by Dybjer

and Moeneclaey and they interpret HITs on this scheme in

the groupoid model [28].

Say that a type X is 1-truncated if for all x,y : X , p,q :

x = y, and r , s : p = q we have r = s , and a 1-type is a type
which is 1-truncated. In terms of the∞-groupoid structure

mentioned before, such types are 1-groupoids. An example of

a 1-type is S1 [49], which we mentioned before, and another

one is the classifying space of a group [48]. Groupoids are

related to 1-types via the groupoid quotient [58], which takes

a groupoid G and returns a 1-type whose points are objects

of G up to equivalence. Note that the types of univalent

groupoids and of 1-types are equivalent [3].

The goal of this paper is to show that finitary 1-truncated

higher inductive types can be derived from simpler princi-

ples. More specifically, every finitary 1-truncated HIT can be

constructed in a type theory with propositional truncations,

set quotients, and groupoid quotients. Note that the set quo-

tient is a special instance of the groupoid quotient. The result

of this paper can be used to simplify the semantic study of

finitary 1-truncated HITs. Instead of verifying the existence

of a wide class of HITs, one only needs to check the existence

of propositional truncations and groupoid quotients.

The contributions of this paper are summarized as follows

• An internal definition of signatures for HITs which

allows path and homotopy constructors (Definition

3.4);

• Bicategories of algebras in both 1-types and groupoids

(Definition 3.16);

• A proof that biinitial algebras in 1-types satisfy the

induction principle (Proposition 4.14);

• A biadjunction between the bicategories of algebras in

1-types and algebras in groupoids (Construction 5.12);

• A construction of 1-truncated HITs from the groupoid

quotient (Construction 6.4), which shows that such

HITs exist. This is the main contribution of this paper.

Related Work. Various schemes of higher inductive types

have been defined and studied. Awodey et al. study induc-

tive types in homotopy type theory and prove initial algebra

semantics [14]. Sojakova extended their result to various

higher inductive types, among which are the groupoid quo-

tient, W-suspensions, and the torus [57, 58]. Basold et al.
define a scheme for HITs allowing for both point and path

constructors, but no higher constructors [16], and a similar

scheme is given by Moeneclaey [54]. Dybjer and Moeneclaey

extended this scheme by allowing homotopy constructors

and they give semantics in the groupoid model [28]. In the

framework of computational higher-dimensional type the-

ory [11], Cavallo and Harper defined indexed cubical induc-

tive types and prove canonicity [22]. Altenkirch et al. define
quotient inductive-inductive types, which combine the fea-

tures of quotient types with inductive-inductive types [5, 31].

Kovács and Kaposi extended this syntax to higher inductive-

inductive types [39], which can be used to define not neces-

sarily set-truncated types. The scheme studied in this paper,

is most similar to the one by Dybjer and Moeneclaey [28]

with the restriction that each type has a constructor indi-

cating that the type is 1-truncated. In particular, this means

that inductive-inductive types are not considered. Note that

the HITs we study only have the right elimination property

with respect to 1-types unlike W-suspensions [57, 58].

Higher inductive types have already been used for numer-

ous applications. One of them is synthetic homotopy theory.

Spaces, such as the real projective spaces, higher spheres,

and Eilenberg-MacLane spaces, can be defined as higher in-

ductive types [20, 46, 48, 59]. The resulting definitions are

strong enough to determine homotopy groups [46, 49]. In

addition, algebraic theories can be modeled as HITs, which

allows one to define finite sets as a higher inductive type [33].

Other applications of HITs include homotopical patch the-

ory, which provides a way to model version control systems

[12], and modeling data types such as the integers [10, 16].

Besides, quotient inductive-inductive types can be used to

define the partiality monad [6]. These types can also be used

to define type theory within type theory [7] and to prove nor-

malization [8]. Since the HITs in this paper are 1-truncated,

they can capture algebraic theories while for examples such

as real projective spaces and higher spheres, we can only

define their 1-truncation.

Several classes of higher inductive types have already been

reduced to simpler ones. Both Van Doorn and Kraus con-

structed propositional truncations from non-recursive higher

inductive types [42, 62]. Using the join construction, Rijke

constructed several examples of HITs, namely n-truncations,
the Rezk completion, and set quotients [56]. Awodey et al.
give an impredicative construction of finitary inductive types

and some HITs [13]. Constructions of more general classes

of HITs have also been given. Assuming UIP, Kaposi et al.
constructed all finitary quotient inductive-inductive types

from a single one [40], and without UIP, Van der Weide and

Geuvers constructed all finitary set truncated HITs from

quotients [61]. Note that these two works only concern set

truncated HITs while our work concerns 1-truncated HITs.

Furthermore, the HITs considered by Van der Weide and

Geuvers are a special case of the HITs in this paper.

Lastly, an alternative way to verify the existence of higher

inductive types, is by constructing them directly in a model.

Coquand et al. interpreted several HITs in the cubical sets
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model [18, 25]. Note that one can constructively prove uni-

valence in the cubical sets model [24] and that cubical type

theory satisfies homotopy canonicity [26]. Furthermore, cubi-

cal type theory has been implemented in Agda with support

for higher inductive types [63]. Lumsdaine and Shulman give

a semantical scheme for HITs and show that these can be

interpreted in sufficiently nice model categories [51].

Formalization. All results in this paper are formalized in

Coq [53] using UniMath [64]. The formalization uses the

version with git hash 2dadfb61 and can be found here:

https://github.com/nmvdw/GrpdHITs/tree/LICS

Overview.We start by recalling the groupoid quotient and

displayed bicategories in Section 2. Displayed bicategories

are our main tool to construct the bicategory on algebras on

a signature. In Section 3, we define signatures and show that

each signature gives rise to a bicategory of algebras in both

1-types and groupoids. The notion of a higher inductive type

on a signature is given in Section 4. There, we also prove

initial algebra semantics, which says that biinitiality is a

sufficient condition for being a HIT. To construct the desired

higher inductive type, we use the groupoid quotient, and

in Section 5 we lift this to a biadjunction on the level of

algebras. As a consequence, constructing the initial algebra

of a signature in groupoids is sufficient to construct the

desired higher inductive type. In Section 6, we construct the

desired initial algebra and we conclude that each signature

has a higher inductive type. Lastly, we conclude in Section 7.

Notation. Let us recall some notation from HoTT which

we use throughout this paper. The identity path is denoted

by idpath(x) and the concatenation of paths p : x = y and

q : y = z is denoted by p • q. Given a type X with points

x,y : X and paths p,q : x = y, we call a path s : p = q a

2-path. A proposition is a type of which all inhabitants are

equal. A set is a type X such that for all x,y : X the type

x = y is a proposition. A homotopy between f ,д : X → Y
consists of a path f (x) = д(x) for each x : A.

2 Preliminaries
2.1 Groupoid Quotient
Let us start by formally introducing the groupoid quotient

[58]. The groupoid quotient is a higher dimensional version

of the set quotient, so let us quickly recall the set quotient.

Given a setoid (X ,R) (a set X with an equivalence relation R
valued in propositions on X ), the set quotient gives a type
X/R, which is X with the points identified according to R.
Note that X/R always is a set since R becomes the equality.

Instead of a setoid, the groupoid quotient takes a groupoid

as input. Recall that a groupoid is a category in which ev-

ery morphism is invertible. In particular, each groupoid has

identity morphisms, denoted by id(x), and a composition

operation. The composition of f and д is denoted by f · д.
In addition, the type of morphisms from x to y is required to

be a set. We write Grpd for the type of groupoids.

Given G : Grpd, the groupoid quotient gives a 1-type

GQuot(G). In this type, the points are objects ofG and these

are identified according to the morphisms in G. In addition,

the groupoid structure must be preserved. Informally, we

define the groupoid quotient as the following HIT.

Inductive GQuot (G : Grpd) :=
| gcl : G → GQuot(G)
| gcleq :

∏
(x,y : G)(f : G(x,y)), gcl(x) = gcl(y)

| ge :
∏
(x : G), gcleq(id(x)) = idpath(gcl(x))

| gconcat :
∏
(x,y, z : G)(f : G(x,y))(д : G(y, z)),

gcleq(f · д) = gcleq(f ) • gcleq(д)
| gtrunc :

∏
(x,y : GQuot(G))(p,q : x = y)(r , s : p = q),

r = s

To formally add this type to our theory, we need to pro-

vide introduction, elimination, and computation rules for

GQuot(G). Formulating the elimination principle requires

two preliminary notions. These are inspired by the work by

Licata and Brunerie [47]. The first of these gives paths in a

dependent type over a path in the base.

Definition 2.1. Given a type X : Type, a type family Y :

X → Type, points x1, x2 : X , a path p : x1 = x2, and points

x1 : Y (x1) and x2 : Y (x2) over x1 and x2 respectively, we
define the type x1 =

Y
p x2 of paths over p from x1 to x2 by

path induction onp by saying that the paths over the identity
path idpath(x) from x1 to x2 are just paths x1 = x2.

Note that the groupoid quotient also has constructors for

paths between paths. This means that we also need a depen-

dent version of 2-paths, and inspired by the terminology of

globular sets, we call these globes over a given 2-path. We

define them as follows.

Definition 2.2. Let X , Y , and x1, x2 be as in Definition 2.1.

Suppose, that we paths p,q : x1 = x2, a 2-path д : p = q, and
paths p : x1 =p x2 and q : x1 =q x2 over p and q respectively,

we define the type p =д q of globes over д from p to q by

path induction onд by saying that the paths over the identity
path idpath(p) are just paths p = q.

From this point on, we assume that our type theory has

the groupoid quotient. More specifically, we assume the fol-

lowing axiom.

Axiom 2.3. For each groupoid G there is a type GQuot(G)
which satisfies the rules in Figure 1.

Note that there are no computation rules for gconcat, ge,
and gtrunc, because such rules follow from the fact that Y
is a family of 1-types.

2.2 Bicategory Theory
The upcoming constructionmakes heavy use of notions from

bicategory theory [17, 45] and in particular, the displayed

machinery introduced by Ahrens et al. [2]. Here we recall
some examples of bicategories and the basics of displayed

bicategories.

https://github.com/UniMath/UniMath/tree/2dadfb61f5ef0d9805cf0eb6b80ef2beb26472d5
https://github.com/nmvdw/GrpdHITs/tree/LICS
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Introduction rules:

x : G
gcl(x) : GQuot(G)

x,y : G f : G(x,y)

gcleq(f ) : gcl(x) = gcl(y)
x : G

ge(x) : gcleq(id(x)) = idpath(gcl(x))

x,y, z : G f : G(x,y) д : G(y, z)

gconcat(f ,д) : gcleq(f · д) = gcleq(f ) • gcleq(д)
x,y : GQuot(G) p,q : x = y r , s : p = q

gtrunc(r , s) : r = s

Elimination rule:

Y : GQuot(G) → 1-Type gclY :

∏
(x : G),Y (gcl(x))

gcleqY :

∏
(x,y : G)(f : G(x,y)), gclY (x) =gcleq(f ) gclY (y)

geY :

∏
(x : G), gcleqY (id(x)) =ge(x ) idpath(gclY (x))

gconcatY :

∏
(x,y, z : G)(f : G(x,y))(д : G(y, z)), gcleqY (f · д) =gconcat(f ,д) gcleqY (f ) • gcleqY (д)

gind(gclY , gcleqY , geY , gconcatY ) :
∏
(x : GQuot(G)),Y (x)

Computation rules:

For gcl: gind(gclY , gcleqY , geY , gconcatY )(gcl(x)) ≡ gclY (x)
For gcleq: apd (gind(gclY , gcleqY , geY , gconcatY )) (gcleq(f )) = gcleqY (f )

Figure 1. Introduction, elimination, and computation rules for the groupoid quotient [58].

Recall that a bicategory consists of objects, 1-cells between

objects, and 2-cells between 1-cells. The type of 1-cells from

x to y is denoted by x → y and the type of 2-cells from f to

д is denoted by f ⇒ д. Note that the type f ⇒ д is required

to be a set. There are identity 1-cells and 2-cells denoted by

id1 and id2 respectively, composition of 1-cells f and д is

denoted by f ·д, and the vertical composition of 2-cells θ and

θ ′
is denoted by θ • θ ′. The left whiskering of a 2-cell θ with

1-cell f is denoted by f ◁ θ and right whiskering of θ with

a 1-cell д is denoted by θ ▷ д. Unitality and associativity of

vertical composition of 2-cells hold strictly while for 1-cells,

these laws only hold up to an invertible 2-cell.

Let us fix some notation before continuing. Given bicat-

egories B1 and B2, we write Pseudo(B1,B2) for the type of

pseudofunctors from B1 to B2. The type of pseudotransfor-

mations from F to G is denoted by F ⇒ G and the type of

modifications from θ to θ ′ is denoted by θ ⇛ θ ′ [45]. Lastly,
the type of biadjunctions between B1 and B2 is denoted by

L ⊣ R where L : Pseudo(B1,B2) and R : Pseudo(B2,B1). If we

have L ⊣ R, we say that L is left biadjoint to R. The definition
of biadjoint we use, is similar to the one used by Gurski [34],

but without any coherencies. Beside these standard notions,

we use two bicategories: 1-Type and Grpd.

Example 2.4. We have

• a bicategory 1-Type whose objects are 1-types, 1-cells
are functions, and 2-cells are homotopies;

• a bicategory Grpd of groupoids whose objects are (not

necessarily univalent) groupoids, 1-cells are functors,

and 2-cells are natural transformations.

Next we discuss displayed bicategories, which is our main

tool to define bicategories of algebras on a signature. Intu-

itively, a displayed bicategory D over B represents structure

and properties to be added to B. Displayed bicategories gen-

eralize displayed categories to the bicategorical setting [4].

Each such D gives rise to a total bicategory

∫
D. The full

definition can be found in the paper by Ahrens et al. [2], and
here, we only show a part.

Definition 2.5. Let B be a bicategory. A displayed bicate-
gory D over B consists of

• For each x : B a type D(x) of objects over x ;
• For each f : x → y, x : D(x) and y : D(y), a type

x
f
−→ y of 1-cells over f ;

• For each θ : f ⇒ д, f : x
f
−→ y, and д : x

д
−→ y, a set

f
θ
=⇒ д of 2-cells over θ .

In addition, there are identity cells and there are composition

and whiskering operations. The composition of displayed

1-cells f andд is denoted by f ·д, the displayed identity 1-cell
is denoted by id1(x). The vertical composition of 2-cells θ
and θ ′ is denoted by θ • θ ′

, the left and right whiskering is

denoted by f ◁ θ and θ ▷ f respectively, and the identity

2-cell is denoted by id2(f ).

Definition 2.6. Let B be a bicategory and let D be a dis-

played bicategory over B. We define the total bicategory∫
D as the bicategory whose objects of

∫
D are just depen-

dent pairs (x, x) with x in B and x in D(x). The 1-cells and
2-cells in

∫
D are defined similarly. In addition, we define

the projection πD : Pseudo(
∫
D,B) to be the pseudofunctor

which takes the first component of each pair.

Let us finish this section by defining the displayed bicate-

gories we need in the remainder of this paper. Motivation

and explanation of Examples 2.7 and 2.9 is given by Ahrens

et al. [2].
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Example 2.7. Given a bicategory B and a pseudofunctor

F : Pseudo(B,B), we define a displayed bicategory DFalg(F )
over B such that

• the objects over x : B are 1-cells hx : F (x) → x ;
• the 1-cells over f : x → y from hx to hy are invertible

2-cells τf : hx · f ⇒ F (f ) · hy ;
• the 2-cells over θ : f ⇒ д from τf to τд are equalities

hx ◁ θ • τд = τf • F (θ ) ▷ hy .

Example 2.8. Given a bicategory B, a type I , and for each

i : I a displayed bicategory Di over B, we define a displayed
bicategory

∏
(i : I ),Di over B such that

• the objects over x : B are functions

∏
(i : I ),Di (x);

• the 1-cells over f : x → y from x to y are functions∏
(i : I ), x(i)

f
−→ y(i);

• the 2-cells over θ : f ⇒ д from f to д are functions∏
(i : I ), f (i)

θ
=⇒ д(i).

Example 2.9. Let B be a bicategory with a displayed bicat-

egory D over it. Now suppose that we have pseudofunc-

tors S,T : Pseudo(B,B) and two pseudotransformations

l, r : πD · S ⇒ πD · T . Then we define a displayed bicat-

egory DFcell(l, r ) over
∫
D such that

• the objects over x are 2-cells γx : l(x) ⇒ r (x);
• the 1-cells over f : x → y from γx to γy are equalities

(γx ▷ T (πD (f ))) • r (f ) = l(f ) • (S(πD (f )) ◁ γy );

• the 2-cells over θ : f ⇒ д are inhabitants of the unit

type.

Example 2.10. Let B be a bicategory and let P be a family of

propositions on the objects of B. Then we define a displayed

bicategory FSub(P) over Bwhose objects over x are proofs of

P(x) and whose displayed 1-cells and 2-cells are inhabitants

of the unit type. The total bicategory

∫
FSub(P) is the full

subbicategory of B whose objects satisfy P .

3 Signatures and their Algebras
Before we can discuss how to construct 1-truncated higher

inductive types, we need to define signatures for those. Our

notion of signature is similar to the one by Dybjer and Moen-

claey [28]. However, instead of defining them externally, we

define a type of signatures within type theory just like what

was done for inductive-recursive and inductive-inductive

definitions [29, 32]. In addition, we show that each signature

Σ gives rise to a bicategory of algebras for Σ.
In this section, we study HITs of the following shape

Inductive H :=

| c : P(H ) → H

| p :

∏
(j : I )(x : Q(H )), l(x) = r (x)

| s :
∏
(j : J )(x : R(H ))(r : a1(x) = a2(x)),

q1(x, r ) = q2(x, r )

| t :
∏
(x,y : H )(q1,q2 : x = y)(r , s : q1 = q2), r = s

To see what the challenges are when defining such HITs, let

us take a closer look at the torus.

Inductive T 2
:=

| base : T 2

| loopl, loopr : base = base
| surf : loopl • loopr = loopr • loopl

There is a point constructor base, two paths constructors

loopl, loopr : base = base, and a homotopy constructor

surf : loopl • loopr = loopr • loopl. Note that loopl and
loopr refer to base and that surf refers to all other construc-

tors. Hence, the signatures we define, must be flexible enough

to allow such dependencies.

A similar challenge comes up when defining the bicate-

gory of algebras for a signature. For the torus, an algebra

would consist of a type X , a point b, paths p,q : b = b, and a

2-path s : p • q = q • p. Again there are dependencies: p and

q depend on b while s depends on both p and q. To overcome

this challenge, we use displayed bicategories to construct

the bicategory of algebras in a stratified way.

3.1 Signatures
Now let us define signatures, and to do so, we must specify

data which describes the constructors for points, paths, and

homotopies. To specify the point constructors, we use poly-
nomial codes. Given a type X and a polynomial code P , we
get another type P(X ). Such a code P describes an operation

of the form P(X ) → X .

Definition 3.1. The type of codes for polynomials is in-
ductively generated by the following constructors

C(A) : P, Id : P, P1 + P2 : P, P1 × P2 : P

where A is a 1-type and P1 and P2 are elements of P.

The constructor C(A) represents the constant polynomial,

Id represents the identity, and P1+P2 and P1×P2 represent the
sum and product respectively. Note that we restrict ourselves

to finitary polynomials since we do not have a constructor

which represents the function space.

The second part of the signature describes the path con-

structors, which represent universally quantified equations.

To describe them, we must give two path endpoints. These
endpoints can refer to the point constructor, which we rep-

resent by a polynomial A. In addition, they have a source

(the type of the quantified variable) and a target (the type

of the term). The source and the target are represented by

polynomials S and T respectively.

Definition 3.2. Let A, S , and T be codes for polynomials.

The type EA(S,T ) of path endpoints with arguments A,
source S , and target T is inductively generated by the con-

structors given in Figure 2.

Note that the parameterA is only used in the path endpoint

constr, which represents the point constructor. If we have
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P : P
idA : EA(P, P)

P,Q,R : P e1 : EA(P,Q) e2 : EA(Q,R)
e1 · e2 : EA(P,R)

constr : EA(A, Id)

P,Q : P
inl : EA(P, P +Q)

P,Q : P
inr : EA(Q, P +Q)

P,Q : P
pr

1
: EA(P ×Q, P)

P,Q : P
pr

2
: EA(P ×Q,Q)

P : P X : 1-Type x : X

c(x) : EA(P,C(X ))

P,Q,R : P e1 : EA(P,Q) e2 : EA(P,R)
(e1, e2) : EA(P,Q × R)

Figure 2. Rules for the path endpoints.

T : P e : EA(R,T )
idpath(e) : Hl ,r ,a1,a2 (e, e)

T : P e1, e2 : EA(R,T ) h : Hl ,r ,a1,a2 (e1, e2)

h−1 : Hl ,r ,a1,a2 (e2, e1)

T : P e1, e2, e3 : EA(R,T ) h1 : Hl ,r ,a1,a2 (e1, e2) h2 : Hl ,r ,a1,a2 (e2, e3)

h1 @h2 : Hl ,r ,a1,a2 (e1, e3)

T1,T2,T3 : P e1 : EA(R,T1) e2 : EA(T1,T2) e3 : EA(T2,T3)
α (e1, e2, e3) : Hl ,r ,a1,a2 (e1 · (e2 · e3), (e1 · e2) · e3)

T : P e : EA(R,T )
λ(e) : Hl ,r ,a1,a2 (idR ·e, e)

T : P e : EA(R,T )
ρ(e) : Hl ,r ,a1,a2 (e · idT , e)

T1,T2 : P e1, e2 : EA(R,T1) e3, e4 : EA(R,T2) h : Hl ,r ,a1,a2 ((e1, e3), (e2, e4))

pr
1
(h) : Hl ,r ,a1,a2 (e1, e2), pr

2
(h) : Hl ,r ,a1,a2 (e3, e4)

T1,T2 : P e1, e2 : EA(R,T1) e3, e4 : EA(R,T2) h1 : Hl ,r ,a1,a2 (e1, e2) h2 : Hl ,r ,a1,a2 (e3, e4)

(h1,h2) : Hl ,r ,a1,a2 ((e1, e3), (e2, e4))

T1,T2 : P e1, e2 : EA(R,T1) h : Hl ,r ,a1,a2 (e1, e2)

inl(h) : Hl ,r ,a1,a2 (e1 · inl, e2 · inl)
j : J e : EA(R,Q j )

pathj (e) : Hl ,r ,a1,a2 (e · l(j), e · r (j))
T1,T2 : P e1, e2 : EA(R,T2) h : Hl ,r ,a1,a2 (e1, e2)

inr(h) : Hl ,r ,a1,a2 (e1 · inr, e2 · inr)
parg : Hl ,r ,a1,a2 (a1,a2)

el , er : EA(Q,A) h : Hl ,r ,a1,a2 (el , er )

ap h : Hl ,r ,a1,a2 (el · constr, er · constr)

Figure 3. Rules for the homotopy endpoints.

a type X with a function c : A(X ) → X , then each endpoint

e gives for every x : S(X ) a point JeK(x) : T (X ). Note that

JeK(x) depends on c while we do not write c in the notation.

Hence, two endpoints el , er represent the equation∏
(x : S(X )), Jel K(x) = Jer K(x).

Note that a HIT could have arbitrarily many path construc-

tors and we index them by the type J .
The last part of the signature describes the homotopy

constructors and these depend on both the point and path

constructors. A homotopy constructor represents an equa-

tion of paths, which is universally quantified over both points

and paths of the HIT being defined. The point argument is

represented by a polynomial R, and the path argument is rep-

resented by a polynomial T and endpoints a1,a2 : EA(R,T ).

Lastly, the type of the paths in the equation is described by

two endpoints sl , sr : EA(R,W ) withW : P.

Definition 3.3. Suppose that we have
• A polynomial A;
• A type J together with for each j : J a polynomial Q j
and endpoints lj , r j : EA(Q j , Id);

• A polynomial R;
• A polynomial T with endpoints a1,a2 : EA(R,T );
• A polynomialW with endpoints s1, s2 : EA(R,W ).

Then we define the type Hl ,r ,a1,a2 (s1, s2) of homotopy end-
point inductively by the constructors in Figure 3.

There are three homotopy endpoints of particular impor-

tance. The first one is path, which represents the path con-

structor and it makes use of lj and r j . The second one, parg,
represents the path argument and it uses a1 and a2. The last
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one is ap and it represents the action of the point constructor

on a homotopy endpoint.

The way we represent path arguments allows us to rep-

resent equations with any finite number of path arguments

by only two path endpoints. For example, two path argu-

ments p : x1 = y1 and q : x2 = y2 is represented by one path

argument of type (x1, x2) = (y1,y2).
Given a type X with a function c : A(X ) → X and for

each x : Q j (X ) a path lj (x) = r j (x), a homotopy endpoint

p : Hl ,r ,a1,a2 (s1, s2) gives rise for each point x : R(X ) and

path w : a1(x) = a2(x) to another path p(x,w) : s1(x) =
s2(x). Hence, two homotopy endpoints p,q : Hl ,r ,a1,a2 (s1, s2)
represent the equation∏

(x : R(X ))(w : a1(x) = a2(x)),p(x,w) = q(x,w)

Now let us put this all together and define what signatures

for higher inductive types are.

Definition 3.4. A HIT-signature Σ consists of

• A polynomial AΣ
;

• A type JΣP together with for each j : JΣP a polynomial

SΣj and endpoints lΣj , r
Σ
j : EAΣ (SΣj , Id);

• A type JΣH together with for each j : JΣH polynomi-

als RΣ
j and TΣj , endpoints aΣj , b

Σ
j : EAΣ (RΣ

j , T
Σ
j ) and

sΣj , t
Σ
j : EAΣ (RΣ

j , Id), and homotopy endpoints pΣj , q
Σ
j :

HlΣj ,r
Σ
j ,a

Σ
j ,b

Σ
j
(sΣj , t

Σ
j ).

If Σ is clear from the context, we do not write the su-

perscript. In the remainder, we show how to interpret the

following HIT given a signature Σ:

Inductive H :=

| c : A(H ) → H

| p :

∏
(j : JP)(x : Sj (H )), Jlj K(x) = Jrj K(x)

| s :
∏
(j : JH)(x : Rj (H ))(r : aj (x) = bj (x)),

pj (x, r ) = qj (x, r )

| t :
∏
(x,y : H )(p,q : x = y)(r , s : p = q), r = s

Next we consider three examples of HITs we can express

with these signatures.

Example 3.5. The torus is described by the signature T 2
.

• Take AT2

= C(1);
• Take JT

2

P = 2 and for both inhabitants we take ST
2

=

C(1) and lT
2

= rT
2

= constr;
• Take JT

2

H = 1. Since there no arguments for this path

constructor, we take RT2

= C(1) and aT
2

= bT
2

=

c(tt). Now for the left-hand side and right-hand side

of this equation, we take pathtrue(id)@ pathfalse(id)
and pathfalse(id)@ pathtrue(id) respectively.

Example 3.6. We represent the integers modulo 2 as the

following HIT:

Inductive Z2 :=

| Z : Z2

| S : Z2 → Z2
| m :

∏
(x : Z2), S(S(x)) = x

| c :
∏
(x : Z2),m(S(x)) = ap S (m(x))

Note that all constructors except Z are recursive. We define

a signature Z2.

• Take AZ2 = C(1) + Id;
• Take JZ2P = C(1) and for its unique inhabitant we take

SZ2 = Id and

lZ2 = (inr · constr) · (inr · constr), rZ2 = id;

• Take JZ2H = C(1). Furthermore, we take RZ2 = Id and

aZ2 = bZ2 = c(tt). The endpoints s and t encode

S(S(S(x))) and S(x) respectively, and for the left-hand

side and right-hand side of this equation, we take

ap (λ−1
@α @ inr(path1(id))@α−1

@λ@λ)

α−1
@α−1

@ pathtt(inr · constr)@ ρ .

respectively. Note that we use α , λ, and ρ to make

the equations type check. If we would interpret the

left-hand side and right-hand side of the homotopy

constructor in 1-types, then all occurrences of α , λ,
and ρ become the identity path. We thus get the right

homotopy constructor.

Example 3.7. Given a 1-type A, the set truncation of A is

defined by the following HIT:

Inductive | |A| | :=

| inc : A → ||A| |

| trunc :
∏
(x,y : | |A| |)(p,q : x = y),p = q

Note that this higher inductive type has a parameter A, so
the signature we define, depends on a 1-type A as well. To

encode the path arguments of trunc, we use that two paths

p,q : x = y is the same as a path r : (x, x) = (y,y). Define a
signature | |A| | such that

• A | |A | | = C(A);
• J | |A | |

P is the empty type;

• J | |A | |

H = 1. In addition, there are two point arguments

R | |A | | = Id × Id and a path argument with left-hand

side (pr
1
, pr

1
) and right-hand side (pr

2
, pr

2
). For the

left-hand side and right-hand side of the homotopy,

we take pr
1
(parg) and pr

2
(parg) respectively.

3.2 Algebras in 1-types and groupoids
With the signatures in place, our next goal is to study the

introduction rules of HITs and for that, we define bicate-

gories of algebras for a signature. Since we ultimately want

to construct HITs via the groupoid quotient, we look at both

algebras in 1-types and groupoids.

In both cases, we use a stratified approach with displayed

bicategories. Let us illustrate this by briefly describing the

construction for 1-types. On 1-Type, we define a displayed
bicategory and we denote its total bicategory by PreAlg(Σ).
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The objects of PreAlg(Σ) consist of a 1-type X together with

an operation P(X ) → X . Concretely, the objects satisfy the

point introduction rules specified by Σ. On top of PreAlg(Σ),
we define another displayed bicategory whose total bicat-

egory is denoted by PathAlg(Σ). Objects of PathAlg(Σ) sat-
isfy the introduction rules for both the points and the paths.

Lastly, we take a full subbicategory of PathAlg(Σ) obtaining
another bicategory Alg(Σ) whose objects satisfy the intro-

duction rules for the points, paths and homotopies.

To define PreAlg(Σ), we use Example 2.7.

Problem 3.8. Given P : P, to construct pseudofunctors

JPK : Pseudo(1-Type, 1-Type), ⟨P⟩ : Pseudo(Grpd,Grpd).

Construction 3.9 (for Problem 3.8). We only discuss the

case for 1-types since the case for groupoids is similar. Given

a polynomial P and a typeX , we get a type P(X ) by induction.

The verification that this gives rise to a pseudofunctor can

be found in the formalization. □

Definition 3.10. Let Σ be a signature. Then we define the bi-

categories PreAlg(Σ) and PreAlgGrpd(Σ) to be the total bicate-
gories of DFalg(JAΣK) and DFalg(⟨AΣ⟩) respectively. Objects

of these bicategories are called prealgebras for Σ.

Note that prealgebras only have structure witnessing the

introduction rule for the points. Next we look at the intro-

duction rule for the paths. In this case, the desired structure

is added via Example 2.9 and to apply this construction, we

interpret path endpoints as pseudotransformations.

Problem 3.11. Given e : EA(P,Q), to construct pseudotrans-
formations

JeK : JPK · πDFalg(JAK) ⇒ JQK · πDFalg(JAK),

⟨e⟩ : ⟨P⟩ · πDFalg(⟨A⟩) ⇒ ⟨Q⟩ · πDFalg(⟨A⟩).

Construction 3.12 (for Problem 3.11). We only discuss

JeK since ⟨e⟩ is defined similarly. Given a 1-type X and

c : A(X ) → X , we define the function JeK : P(X ) → Q(X ) by

induction. The verification that this gives rise to a pseudo-

transformation can be found in the formalization. □

Definition 3.13. Let Σ be a signature. We use Examples 2.8

and 2.9 to define displayed bicategories over PreAlg(Σ) and
PreAlgGrpd(Σ).

DPathAlg(Σ) =
∏

(i : JΣP),DFcell(Jl
Σ(i)K, JrΣ(i)K)

DPathAlgGrpd(Σ) =
∏

(i : JΣP),DFcell(⟨l
Σ(i)⟩, ⟨rΣ(i)⟩)

We define PathAlg(Σ) and PathAlgGrpd(Σ) to be the total

bicategories of DPathAlg(Σ) and DPathAlgGrpd(Σ) respec-
tively. Objects of PathAlg(Σ) and PathAlgGrpd(Σ) are called
path algebras for Σ.

Problem 3.14. Suppose that we have a homotopy endpoint
h : Hl ,r ,a1,a2 (s1, s2). Given a 1-type X with c : A(X ) → X and
p :

∏
(j : J )(x : Q j (X )), lj (x) = r j (x), to construct for each

x : Q(X ) and w : Ja1K(x) = Ja2K(x) an equality JhK(x,w) :

Js1K(x) = Js2K(x).
In addition, given a groupoid G together with a functor

c : ⟨A⟩(G) → G and for each j : J a natural transformation
⟨lj ⟩(G) ⇒ ⟨r j ⟩(G), to construct for each object x : ⟨Q⟩(G)
and morphism w : ⟨a1⟩(G)(x) → ⟨a2⟩(G)(x) a morphism
⟨h⟩(x,w) : ⟨s1⟩(G)(x) → ⟨s2⟩(G)(x).

Construction 3.15 (for Problem 3.14). By induction. □

Definition 3.16. Let Σ be a HIT signature. We define Alg(Σ)
to be the full subbicategory of PathAlg(Σ) in which every

object X satisfies∏
(j : JΣH)(x : RΣ

j (X ))(w : JaΣj K(x) = JbΣj K(x)),

JpΣj K(x,w) = JqΣj K(x,w)

In addition, we define AlgGrpd(Σ) to be the full subbicategory
of PathAlgGrpd(Σ) in which every object X satisfies∏

(j : JΣH)(x : ⟨RΣ
j ⟩X )(w : ⟨aΣj ⟩(x) = ⟨bΣj ⟩(x)),

⟨pΣj ⟩(x,w) = ⟨qΣj ⟩(x,w)

Objects of Alg(Σ) and AlgGrpd(Σ) are called algebras for Σ.

The bicategory Alg(Σ) is constructed by repeatedly using

Definition 2.6. By unpacking the definition, we see that an

algebra X : Alg(Σ) consists of

• A 1-type X ;

• A function cX : A(X ) → X ;

• For each j : JP and point x : Sj (X ) a path pXj (x) :

JljK(x) = JrjK(x);
• For each j : JH, x : R(X ) and w : Ja1K(x) = Ja2K(x), a
homotopy hXj : JpK(x,w) = JqK(x,w)

4 Induction and Biinitiality
The algebra structure only represents the introduction rule

and the next step is to define the elimination and computa-

tion rules for higher inductive types. Before we can formulate

these principles, we need to define dependent actions of poly-

nomials, path endpoints, and homotopy endpoints. All of

these constructions are done by induction and details can be

found in the literature [28, 35, 61].

Problem 4.1. Given a type X , a type family Y on X , and a
polynomial P , to construct a type family P(Y ) on P(Y ).

Problem 4.2. Given a type X , a type family Y on X , a poly-
nomial P , and a map f :

∏
(x : X ),Y (x), to construct a map

P(f ) :
∏
(x : P(X )), P(Y )(x),

Problem 4.3. Given a type X , a type family Y on X , an
endpoint e : EA(P,Q), and a map c : A(X ) → X , to construct
for each x : P(X ) and y : P(Y )(x) an inhabitant JeK(y) :

Q(Y )(JeK(x)).
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Problem 4.4. Suppose, that we have polynomials A, P,Q , a
type X with a map cX : A(X ) → X , and a type family Y

on X with a map cY :

∏
(x : X ),A(Y )(x) → Y (cX (x)) and a

map f :

∏
(x : X ),Y (x). Given an endpoint e : EA(P,Q), to

construct an equality

JeK(f ) : Q(f )(JeK(x)) = JeK(P(f )(x)).

Problem 4.5. Let Σ be a signature. Let X be a type with a
function cX : A(X ) → X and with for each j : JP and x : S(X )

a path pX (j, x) : JlK(x) = JrK(x). In addition, suppose that
Y is a type family on X , that we have a function cY :

∏
(x :

A(X )),A(Y )(x) → Y (cX (x)), and that for all j : JP and points
x : S(X ) and x : S(Y )(x), we have a path pY : JlK(x) =pX (j ,x )

JrK(x). Furthermore, let x : R and x : R(Y )(x) be points and let
w : JaK(x) = JbK(x) andw : JaK(x) =p JbK(x) be paths. Then
for each homotopy endpoint h : Hl ,r ,a1,a2 (s1, s2), to construct
a path

h(x,w) : JsK(x) =h(x ,w )
JtK(x).

With these notions in place, we define displayed algebras.
These represent the input of the elimination rule.

Definition 4.6. Given a signature Σ and an algebra X for Σ,
a displayed algebra Y over X consists of

• A family Y of 1-types over X ;

• For each x : A(X ) a map cY : A(Y )(x) → Y (cX (x));
• For each j : JP, x : Sj (X ), and x : Sj (Y )(x), a path

pYj : JljK(x) =pXj x
Jr jK(x);

• For each j : JH, points x : R(X ) and x : R(Y )(x), and
paths w : a(x) = b(x) and w : JaK(x) =w JbK(x), a
globe h

Y
j : p(x) =

hXj (x ,w )
q(x) over hXj (x,w).

Remark 4.7. The type family of a displayed algebra is re-

quired to be 1-truncated. This means that the HITs we con-

struct, can only be eliminated into 1-types, and as a conse-

quence, these HITs only have the right elimination principle

with respect to 1-types.

The output of the elimination rule and the computation

rules are given by a section to be defined in Definition 4.9

below. One might expect that, just like for the groupoid

quotient, the computation rules for the paths are given as

globes over some 2-path in the base (Definition 2.2). However,

this is not the case.

This is because there is a slight discrepancy between the

rules for the groupoid quotient and the HITs we discuss,

namely for the former the computation rules for the points

are definitional equalities while for the latter, these rules only

hold propositionally. This affects how we need to formulate

the computation rules for the paths.

Let us illustrate this via the torus (Example 3.5). The input

for the elimination rule consists, among others, of a type

family Y , a point b : Y (base), and a path pl : b =loopl
b.

The elimination rule gives a map f :

∏
(x : T 2),Y (x). By

the point computation rule, we have a propositional equal-

ity between f (base) and b. Now the computation rule for

loopl ought to equate apd f loopl and pl . However, such
an equation does not type check since apd f loopl has type
f (b) =loopl

f (b) while pl has type b =loopl
b. In conclusion,

we cannot formulate the computation rules the same way as

we did for the grorupoid quotient.

Our solution to this problem is to define a type of squares
over a given 2-path similarly to Definition 2.2.

Definition 4.8. Let X be a type and let Y be a type family

onX . Suppose that we are given points x1, x2 : X and x1, x1
′
:

Y (x1) and x2, x2
′
: Y (x2), paths p,q : x1 = x2 together with

pathsp : x1 =p x2 andq : x1
′ =q x2

′
overp andq respectively.

If we also have two paths h1 : x1 = x1
′
and h2 : x2 = x2

′
and

a 2-path д : p = q, then we define the type of squares over
д from p to q with sides h1 and h2 by path induction.

Definition 4.9. Let X be an algebra for a given signature Σ
and let Y be a displayed algebra over X . Then a section of

Y consists of

• A map f :

∏
(x : X ),Y (x);

• For all x : A(X ), an equality f (cX (x)) = cY (A(f )(x));
• For all j : JP and x : S(X ), a square from apd f (pXj (x))

to pYj (S(f )(x)) with sides JlK(f )(x) and JrK(f )(x).

Definition 4.10. Let Σ be a signature and let X be an al-

gebra for Σ. Then we say that X is a 1-truncated higher
inductive type for Σ if each displayed algebra Y over X has

a section.

Often we just say that X is a HIT for Σ instead of saying

that X is 1-truncated HIT. With this in place, we can check

whether our rules for higher inductive types agree for the

usual examples with the rules given in the literature [59].

We illustrate this with the torus (Example 3.5) and the set

truncation (Example 3.7). In the next example, we write p •q
for the concatenation of dependent paths.

Example 4.11 (Example 3.5 cont’d). Recall the signature

T 2
for the torus. LetX be a HIT for T 2

. SinceX is an algebra,

we have a point base : X , two paths loopl, loopr : base =
base, and a 2-path surf : loopl • loopr = loopr • loopl. This
corresponds precisely to the usual introduction rules of the

torus.

A family Y of 1-types on X together with a point b :

Y (base), two paths l : b =loopl
b and r : b =loopr b and a

globe h : l • r =surf r • l over surf gives rise to a displayed

algebra over X . This corresponds to the usual input of the

elimination rule of the torus. If we have a section s of Y , then
in particular, we get a map fs :

∏
(x : X ),Y (x). We also get

a path ps : f (base) = b, a square from apd f loopl to l and
one from apd f loopr to r . Both squares have sides ps and
ps . These are the computation rules for the points and paths
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of the torus. Note that since we are looking at 1-truncated

HITs, this only gives the 1-truncation of the torus.

Example 4.12 (Example 3.7 cont’d). Let A be a 1-type and

recall the signature | |A| |. Now let X be a HIT on | |A| |. Note
that an algebra for | |A| | consists of a type Z together with

a map A → Z and a proof that Z is a set. This means in

particular, that we have a map inc : A → X and a proof

trunc that X is a set.

A family Y of sets on X together with a map i :

∏
(a :

A),Y (inc(A)) give rise to a displayed algebra over X . A sec-

tion s of that displayed algebra consists of a map fs :
∏
(x :

X ),Y (x) such that fs (inc(a)) = i(a) for all a : A. This corre-
sponds to the usual elimination and computation rules for

the set truncation.

To verify that an algebra satisfies the elimination rule, we

use initial algebra semantics [35]. However, this technique
is usually applied in a categorical setting and it uses initial

objects in categories. Since we work in a bicategorical set-

ting, we need to use the corresponding notion in bicategory

theory: biinitiality.

Definition 4.13. Let B be a bicategory and let x be an object

in B. Then we say x is biinitial if
• For each object y there is a 1-cell x → y;
• Given 1-cells f ,д : x → y, there is a 2-cell f ⇒ д;
• Given 2-cells θ, θ ′

: f ⇒ д, there is an equality θ = θ ′.

Briefly, an object x is biinitial if for each y there is 1-cell

from x to y, which is unique up to a unique 2-cell. Now we

can formulate initial algebra semantics for our signatures.

Proposition 4.14. Let Σ be a signature and let X be an alge-
bra for Σ. Then

• If X is a 1-truncated HIT for Σ, then X is biinitial in
Alg(Σ).

• If X is biinitial, then X is a 1-truncated HIT for Σ.

One consequence of initial algebra semantics, is that HITs

are unique up to equality if the univalence axiom holds. This

result is a consequence of the fact that the bicategory of

algebras is univalent. Recall that a bicategory is univalent

if equality between objects X and Y is equivalent to adjoint

equivalences betweenX andY and equality of 1-cells f andд
is equivalent to invertible 2-cells between f and д [2]. Using

the methods employed by Ahrens et al. one can show that

the bicategory of algebras is univalent. Since biinitial objects

are unique up to adjoint equivalence, one can conclude that

HITs are unique up to equality.

Proposition 4.15. Let Σ be a signature and let H1 and H2

are HITs for Σ. Denote the underlying algebras of H1 and H2

by X1 and X2. Then X1 = X2.

5 Lifting the Groupoid Quotient
To construct higher inductive types, we use Proposition 4.14,

which says that binitial objects satisfy the induction principle.

We use the groupoid quotient to acquire the desired alge-

bra. More specifically, we construct a pseudofunctor from

AlgGrpd(Σ) to Alg(Σ), which is the groupoid quotient on the

carrier. We do that in such a way that the obtained pseudo-

functor preserves biinitiality, so that we obtain the HIT by

constructing a biinitial object in AlgGrpd(Σ).
One class of pseudofunctors which preserve biinitial ob-

jects, are left biadjoints. Let us state that more precisely, so

suppose that we have bicategories B and C, a left biadjoint
pseudofunctor L : Pseudo(B,C), and an object x : B. Then
the object L(x) is biinitial if x is.

Instead of just lifting the groupoid quotient to the level of

algebras, we first show that the groupoid quotient is a left

biadjoint and then we lift that biadjunction to the level of

algebras. To do so, we use the fact we defined the bicategory

of algebras via displayed bicategories. This waywe can define

the biadjunction on each part of the structure separately.

More specifically, we define the notion of displayed biad-
junction between two displayed bicategories over a biadjunc-

tion in the base, and we show that each displayed biadjunc-

tion gives rise to a total biadjunction between the total bicat-

egories. Defining displayed biadjunctions requires defining

displayed analogues of pseudofunctors, pseudotransforma-

tions, and invertible modification, which were defined by

Ahrens et al. [2]. For this, we make use of displayed invertible
2-cells [2].

Definition 5.1. Let D1 and D2 be displayed bicategories

over B1 and B2 respectively and let F : Pseudo(B1,B2) be a

pseudofunctor. Then a displayed pseudofunctor F from

D1 to D2 over F consist of

• For each x : B1 a map F 0 : D1(x) → D2(F (x));
• For all 1-cells f : x → y, objects x : D1(x) and y :

D1(y), and displayed 1-cells f : x
f
−→ y, a displayed

1-cell F 1(f ) : F 0(x)
F (f )
−−−→ F 0(y);

• For all 2-cells θ : f ⇒ д, displayed 1-cells f : x
f
−→ y

and д : x
д
−→ y, and displayed 2-cells θ : f

θ
=⇒ д, a

displayed 2-cell F 2(θ ) : F 1(f )
F (θ )
===⇒ F 2(д);

• For each x : B and x : D(x), a displayed invertible

2-cell F i (x) : id1(F 0(x))
Fi (x )
−−−−→ F 1(id1(x));

• For all f : x
f
−→ y and д : y

д
−→ z. a displayed invertible

2-cell F c (f ,д) : F 1(f ) · F 1(д)
Fc (f ,д)
−−−−−→ F 1(f · д).

Here Fi and Fc denote the identitor and compositor of F . In
addition, several coherencies, which can be found in the for-

malization, need to be hold. We denote the type of displayed

pseudofunctors from D1 to D2 over F by D1

F
−→ D2.

Definition 5.2. Let D1 and D2 be displayed bicategories

over B1 and B2 respectively. Suppose that we have displayed

pseudofunctors F : D1

F
−→ D2 and G : D1

G
−→ D2 and a
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pseudotransformation θ : F ⇒ G. Then a displayed pseu-
dotransformation θ from F to G over θ consists of

• For all objects x : B and x : D1(x) a displayed 1-cell

θ 1(x) : F 0(x)
θ (x )
−−−→ G0(x);

• For all 1-cells f : x → y and f : x
f
−→ y a displayed

invertible 2-cell θ 2(f ) : θ 1(x) · F 1(f )
θ (f )
===⇒ G1(f ) ·θ 1(y).

Again several coherencies must be satisfied and the precise

formulation can be found in the formalization. The type

of displayed pseudotransformatons from F to G over θ is

denoted by F
θ
=⇒ G.

Definition 5.3. Suppose that we have displayed bicate-

goriesD1 andD2 over B1 and B2, displayed pseudofunctors F

andG fromD1 toD2 over F andG respectively, and displayed

pseudotransformations θ and θ
′
from F to G over θ and θ ′

respectively. In addition, letm be an invertible modification

from θ to θ ′. Then a displayed invertible modificationm

from θ to θ
′
overm consists of a displayed invertible 2-cell

m2(x) : θ (x)
m(x )
===⇒ θ

′
(x) for each x : B1 and x : D1(x), In addi-

tion, a coherency must be satisfied, which can be found in the

formalization. The type of displayed invertible modifications

from θ to θ
′
overm is denoted by θ

m *4 θ
′
.

Each of these gadgets has a total version.

Problem 5.4. We have

1. Given a displayed pseudofunctor F : D1

F
−→ D2, to con-

struct a pseudofunctor
∫
F : Pseudo(

∫
D1,

∫
D2);

2. Given a displayed pseudotransformation θ : F
θ
=⇒ G, to

construct a pseudotransformation
∫
θ :

∫
F ⇒

∫
G;

3. Given a displayed invertible modificationm : θ
m *4 θ

′
,

to construct an invertible modificaton
∫
m :

∫
θ ⇛

∫
θ
′
.

Construction 5.5 (for Problem 5.4). By pairing. □

Before we can define displayed biadjunctions, we need

several operations on the displayed gadgets we introduced.

Example 5.6. We have the following

• We have id(D) : D
id(B)
−−−→ D where id(B) is the identity;

• Given F : D1

F
−→ D2 and G : D2

G
−→ D3, we have

F ·G : D1

F ·G
−−−→ D3 where F ·G is the composition;

• Given F : D1

F
−→ D2, we have id1(F ) : F

id1(F )
====⇒ F where

id1(F ) is the identity transformation on F ;

• Given θ : F
θ
=⇒ G and θ

′
: G

θ ′

=⇒ H , we have θ • θ
′
:

F
θ•θ ′

===⇒ H where θ • θ ′ is the composition;

• Given F : D1

F
−→ D2,G : D2

G
−→ D3, H : D2

H
−→ D3, and

θ : G
θ
=⇒ H , we have F ◁ θ : F ·G

F◁θ
−−−−→ F · H ;

• Given F : D1

F
−→ D2,G : D1

G
−→ D2, H : D2

H
−→ D3, and

θ : F
θ
=⇒ G, we have θ ▷ H : F · H

θ▷H
−−−−→ G · H ;

• Given F : D1

F
−→ D2, we have

λ : id ·F
λ
=⇒ F , ρ : F · id

ρ
=⇒ F ;

• Given F : D1

F
−→ D2, we have

λ−1 : F
λ−1
==⇒ id ·F , ρ−1 : F

ρ−1

==⇒ F · id;

• Given F : D1

F
−→ D2, G : D2

G
−→ D3, and H : D3

H
−→ D4,

we have

α : (F ·G) · H
α
=⇒ F · (G · H ),

α−1
: F · (G · H )

α−1

==⇒ (F ·G) · H .

Definition 5.7. Suppose we have bicategories B1 and B2

and a biadjunction L ⊣ R from B1 to B2. We write η and ϵ
for the unit and counit of L ⊣ R respectively, and we write τ1
and τr for the left and right triangle respectively. Suppose,

that we also have displayed bicategories D1 and D2 over

B1 and B2 respectively and a displayed pseudofunctor L :

D1

L
−→ D2. Then we say L is a displayed left biadjoint

pseudofunctor if we have

• A displayed pseudofunctors R : D2

R
−→ D1;

• Displayed pseudotransformations

η : id

η
=⇒ L · R, ϵ : R · L

ϵ
=⇒ id;

• Displayed invertible modifications

τ1 : ρ−1 • L ◁ η • α • ϵ ▷ L • λ
τ1 *4

id1(L),

τ2 : λ−1 • η ▷ R • α−1 • R ◁ ϵ • ρ
τ2 *4

id1(R).

From Construction 5.5, we get

Proposition 5.8. Given a displayed left biadjoint pseudo-
functor L, then

∫
L is a left biadjoint pseudofunctor.

Now let us use the introduced notions to construct the

biadjunction on the level of algebras. Our approach is sum-

marized in Figure 4. We start by showing that the groupoid

quotient gives rise to a biadjunction.

Problem 5.9. To construct GQuot ⊣ PathGrpd with a pseud-
ofunctor GQuot : Pseudo(Grpd, 1-Type).

Construction 5.10 (for Problem 5.9). We only show how

the involved pseudofunctors are defined. The pseudofunctor

GQuot is the groupoid quotient while PathGrpd sends a 1-

type X to the groupoid whose objects are points of X and

morphisms from x to y are paths x = y. □

Next we lift it to the level of algebras using the displayed

machinery introduced in this section.
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Alg(Σ) ⊤

PathGrpdAlg
--

��

AlgGrpd(Σ)
GQuotAlg

mm

��

PathAlg(Σ) ⊤

PathGrpdPathAlg
..

��

PathAlgGrpd(Σ)
GQuotPathAlg

mm

��

PreAlg(Σ) ⊤

PathGrpdPreAlg
--

��

PreAlgGrpd(Σ)
GQuotPreAlg

mm

��

1-Type ⊤

PathGrpd
,, Grpd

GQuot

mm

Figure 4. The biadjunction

Problem 5.11. Given a signature Σ, to construct a biadjunc-
tion GQuotAlg ⊣ PathGrpdAlg where

GQuotAlg : Pseudo(AlgGrpd(Σ),Alg(Σ)).

Construction 5.12 (for Problem 5.11). We only give a very

brief outline of the construction.

We start by constructing a displayed biadjunction from

DFalg(⟨AΣ⟩) toDFalg(JAΣK) over the biadjunction from Con-

struction 5.10. To do so, we first need to lift the pseudofunc-

tors, and for that, we generalize the approach of Hermida

and Jacobs to the bicategorical setting [35, Theorem 2.14].

This requires us to construct two pseudotransformations.

p1 : JPK · GQuot ⇒ GQuot · ⟨P⟩,

p2 : ⟨P⟩ · PathGrpd ⇒ PathGrpd · JPK.
We denote the total biadjunction of the resulting displayed

biadjunction by GQuotPreAlg ⊣ PathGrpdPreAlg.
Next we lift the biadjunction to the level of path algebras

and for that, we construct a displayed biadjunction between

DFcell(⟨lΣ(i)⟩, ⟨rΣ(i)⟩) and DFcell(JlΣ(i)K, JrΣ(i)K for all j : JP.
Denote the resulting total biadjunction by GQuotPathAlg ⊣

PathGrpdPathAlg.
To finish the proof, we need to construct one more dis-

played biadjunction. For that, we only need to show that if

G : PathAlgGrpd(Σ) is an algebra, then GQuotPathAlg(G) also
is an algebra, and if X : PathAlg(Σ) is an algebra, then so is

PathGrpdPathAlg(X ). □

The next proposition concludes this section.

Proposition 5.13. If G is an biinitial object in AlgGrpd(Σ),
then GQuotAlg(G) is a biinitial object in Alg(Σ).

6 HIT Existence
From Theorem 4.14 we know that initiality implies the induc-

tion principle. Hence, it suffices to construct a biinitial object

in the bicategory of algebras in 1-types. By Proposition 5.13,

it suffices to construct a biinitial object in AlgGrpd(Σ). To do

so, we adapt the semantics by Dybjer and Moeneclaey to our

setting [28].

Problem 6.1. Given a signature Σ, to construct a biinitial
object G in AlgGrpd(Σ).

Construction 6.2 (for Problem 6.1). We only discuss how

the carrier G of G is defined.

• Note that each polynomial P gives rise to a container

P̂ . Note that each container induces a W-type [1], and

we define the type of objects of G to be the W-type

induced by Â. Denote this type by G0.

• The morphisms of G are constructed as a set quotient.

We first define for each x,y : G0 a type x ∼ y and for

each x,y : G0 and f ,д : x ∼ y, we define a type f ≈ д.
Both of these are defined as an inductive type and for

the constructors, we refer the reader to the formal-

ization. Basically, the constructors for these types are

chosen in such a way that the groupoid being defined

here, has the desired structure. This means we add con-

structors witnessing the path constructors, identity,

composition, and all other laws. We use the same idea

to define f ≈ д.
Note that the input of the quotient is an equivalence

relation, which are valued in propositions. For this

reason, we define f ≈p д to be the propositional trun-

cation of f ≈ д All in all, we define the morphisms

from x to y to be the set quotient of x ∼ y by ≈p . □

Problem 6.3. Each signature has a HIT.

Construction 6.4 (for Problem 6.3). By Propositions 4.14

and 5.13, it suffices to find a biinitial object in AlgGrpd(Σ).
The desired object is given in Construction 6.2. □

7 Conclusion and Further Work
We showed how to construct finitary 1-truncated higher

inductive types using the propositional truncation, quotient,

and the groupoid quotient. This reduces the existence of a

general class of HITs to simpler ones. We needed the types

to be 1-truncated, so that we could use the framework of

bicategory theory, and the HITs we studied had to be finitary

to guarantee that the groupoid quotient commutes with the

involved operations [23]. On the way, we also proved that

HITs are unique.

There are numerous ways to improve on this result. First

of all, the bicategory of algebras in 1-types can be studied in

more detail. For example, it should have products, inserters

and equifiers [55]. In addition, using the fact that we have

higher inductive types, we should be able to show that this

bicategory also has coproducts, co-inserters, and co-equifiers.

Furthermore, to connect our approach to algebra in bicate-

gories with established approaches, one should show that

the underlying functor from Alg(Σ) to 1-Type has a left bi-
adjoint, which gives rise to a monad on 1-Type [19, 44]. The
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biadjunction could be constructed using higher inductive

types.

Second of all, one would like to get rid of the truncation

level. Since untruncated types correspond to∞-groupoids,

generalizing the methods used in this paper to the untrun-

cated case, requires formalizing notions from ∞-category

theory in type theory [9, 21, 30]. This also requires finding an

∞-dimensional generalization of the groupoid quotient. An

alternative approach to deal with untruncated HITs, pointed

out by Ali Caglayan, would be using wild categories [36, 43].

Lastly, it should be possible to take advantage of the way

we constructed HITs to say something about the path space.

One can show with the encode-decode method that the

type gcl(x) = gcl(y) is equivalent to G(x,y). By inspect-

ing Construction 6.4, we see that HITs are constructed as

the groupoid quotient of the groupoid G constructed in Con-

struction 6.2 where we also proved a universal property for

G. For concrete examples, such as the circle, one might be

able to make use of this universal property to deduce a map-

ping principle for baseS1 = baseS1 , which could be used to

show that π1(S
1) is the integers [49].
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