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This Session: Formalizing Category Theory

What is category theory?

▶ Category is an abstract framework for mathematics

▶ Generalizes a common pattern: we have objects and
morphisms

▶ Also used to characterize certain constructions (products,
exponentials, . . . )

▶ Useful in the study of semantics of logic and programming
languages
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Category Theory and Semantics

Curry-Howard-Lambek correspondence

Logic Programming language Category Theory

Formula Type Object
Proof Program Morphism
Connective Type Constructor Categorical structure

Note: categorical structure is described via universal properties
whereas connective/type constructors are described via
introduction and elimination rules.
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The Many Flavors of Category Theory

▶ To model advanced logics or programming languages, we need
more categorical structure

▶ For this reason, many different kinds of categorical structure
have been studied

▶ Throughout this session we will see various kinds of categories
(monoidal categories, double categories, ∞-categories)

▶ In this talk: monoidal categories
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Monoidal Categories, what are they?

Basically: Monoidal category = Monoid + category

A category consists of

▶ objects

▶ morphisms

▶ we have identity and composition operation

A monoidal category is a category with a multiplication ⊗.

▶ given objects x , y , we have an object x ⊗ y

▶ given morphisms f : x → x ′ and g : y → y ′, we have a
morphism f ⊗ g : x ⊗ y → x ′ ⊗ y ′

We require ⊗ to be associative and unital in a weak sense.
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Examples and Applications of monoidal categories

There are many examples of monoidal categories

▶ Sets (and functions) with the binary product

▶ Sets (and functions) with the binary coproduct

▶ Sets (and relations) with the binary product

▶ Abelian groups with the tensor product

Monoidal categories are used in

▶ the semantics of linear logic

▶ quantum theory

▶ domain theory and algebraic effects (smash products)

In this talk: we are interested in the semantics of linear logic
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Monoidal Categories and Linear Logic

x : C y : C
x ⊗ y : C

f : x → x ′ g : y → y ′

f ⊗ g : x ⊗ y → x ′ ⊗ y ′

(a) Monoidal Categories

φ : Prop ψ : Prop

φ⊗ ψ : Prop

Γ ⊢ φ ∆ ⊢ ψ
Γ⊗∆ ⊢ φ⊗ ψ

(b) Linear Logic
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Challenge!

▶ In the study of linear logic, one encounters complicated
models

▶ Lafont’s original model uses comonoids

▶ Other models uses Eilenberg-Moore categories

Challenge: how do we formalize complicated monoidal categories
in a modular way?
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Our paper

▶ We introduce displayed monoidal categories

▶ We use them to construct complicated monoidal categories in
a modular way

▶ Nice application of dependent types to category theory

▶ Formalized using Coq and the UniMath library
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This talk

I will start by illustrating the problem

▶ Models of linear logic

▶ Category of comonoids

Then I will discuss displayed categories

▶ What are displayed categories

▶ Modularly constructing categories

▶ Displayed monoidal categories
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Models of Linear Logic

Key feature of linear logic:

▶ All hypotheses must be used precisely once

▶ So: no copying and deletion

Intuitionistic linear logic has 3 main connectives:

▶ linear conjunction: ⊗
▶ linear implication: ⊸

▶ bang modality: ! (you can duplicate assumptions under a !)

For the semantics:

▶ the linear conjunction and implication are interpreted via a
symmetric monoidal closed category

▶ the bang modality is more complicated and various proposals
have been made
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Linear-non-linear models: Intuition

▶ We have a linear world where we cannot duplicate assumptions

▶ We have a cartesian world where we can duplicate
assumptions

▶ The ! modality jumps from the linear world to the cartesian
world and back
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Linear-non-linear models: Precisely

A linear-non-linear model is an adjunction

C L

where L is a symmetric monoidal category (⊗ and ⊸) and C is a
cartesian category (we can copy and delete hypotheses).
We interpret ! as L → C → L.
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The relation model

The relation model of linear logic

Comonoid(Rel) Rel
C

U

Key construction: monoidal category of comonoids
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Complicated Monoidal Categories: Comonoids

A comonoid (x , ε, δ) in a monoidal category C consists of

▶ an object x : C
▶ a comultiplication ε : x → x ⊗ x

▶ a counit δ : x → 1

▶ Laws: coassociativity and counitality.

For the tensor, we need to consider comonoids as a whole
This does not allow for code reuse (i.e., complicated structures of
which comonoids form substructure)

15/23



Complicated Monoidal Categories: Comonoids

A comonoid (x , ε, δ) in a monoidal category C consists of

▶ an object x : C
▶ a comultiplication ε : x → x ⊗ x

▶ a counit δ : x → 1

▶ Laws: coassociativity and counitality.

For the tensor, we need to consider comonoids as a whole
This does not allow for code reuse (i.e., complicated structures of
which comonoids form substructure)

15/23



Interlude: Group Structures

We can use the following strategy to define the notion of groups.

1. Given a set X , define the type of group structures over X

2. A group is a set together with a group structure

This means we define the notion of groups in 2 steps.

Displayed categories formalize this idea for categories
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Displayed Categories

A displayed category over a category C consists of

▶ For every object x : C, a type of structures over x

▶ For all morphisms f : x → y and structures Sx and Sy for x
and y respectively, a type of structure-preserving maps
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Displayed Categories: Example

The displayed category of groups over sets:

▶ For every set X , a type of group structures for X

▶ For all functions f : X → Y and group structures GX and GY ,
a type expressing that f is a homomorphism
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Building Complicated Structures from Simpler Ones

Displayed categories give modularity, because we can untangle
and stratify structures.
Basically: build up complicated structures from simpler structures

For example:

▶ Product of displayed categories (combines structures)

f : X → Type g : X → Type

h(x) = f (x)× g(x)

▶ Adding a destructor (i.e. coalgebra structure)

f (x) = x → xn

We can reason about the these parts independently, and we can
reuse the results in larger proofs.
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Displayed Monoidal Categories, but what are they?

Displayed monoidal categories
=
Displayed categories + monoidal categories

Note: there also needs to be a suitable interaction between the two
concepts
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Displayed Monoidal Categories, but what are they?

Let S be a displayed category over C.

x : C y : C
x ⊗ y : C

(a) Monoidal Categories

x : C x : Sx y : C y : Sy
x ⊗ y : Sx⊗y

(b) Displayed Monoidal Categories
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Comonoids using displayed monoidal categories

Main idea:

▶ We define a displayed monoidal category that adds a
destructor x → F (x) for a lax monoidal functor F

▶ This way we acquire the counit ε and the comultiplication δ

▶ We define the full subcategory via a displayed monoidal
category, and that gives us the laws

So: we build up the category of comonoids via smaller pieces and
we reason about those smaller parts
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Conclusion

▶ Main take-away: displayed monoidal categories are a
technique to modularly build monoidal categories

▶ In the paper, we define and study displayed monoidal
categories

▶ We apply it to a case study arising from linear logic

▶ They make the formalization of complicated monoidal
categories more convenient and nicer

▶ Key examples: category of comonoids, Eilenberg-Moore
category

Check our paper:
https://dl.acm.org/doi/abs/10.1145/3636501.3636956.
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