Insights From Univalent Foundations A Case Study Using Double Categories

Nima Rasekh, **Niels van der Weide**, Benedikt Ahrens, Paige Randall North What does it mean for mathematical structures to be the same?

Mathematical structures often are identified up to isomorphism

- ▶ For instance, we identify groups up to isomorphism
- We can replace isomorphic groups by each other (as if they were equal)
- All properties that we care about in group theory, are invariant under isomorphism

Mathematical structures often are identified up to isomorphism

- ► For instance, we identify groups up to isomorphism
- We can replace isomorphic groups by each other (as if they were equal)
- All properties that we care about in group theory, are invariant under isomorphism

A Case against Set Theoretic Equality

In set theory there is a mismatch regarding sameness of structures

- According to the foundations: equality
- But in practice: isomorphism

A Case against Set Theoretic Equality

In set theory there is a mismatch regarding sameness of structures

- According to the foundations: equality
- But in practice: isomorphism

Disadvantage:

- ▶ we need to carve out a collection of relevant properties
- and we need to prove that these are invariant under isomorphism

Our foundations should do that for us

Univalent Foundations

- Univalent foundations (UF) is a flavor of intensional Martin-Löf type theory with the univalence axiom¹
- Univalence axiom: types are identified if they are equivalent

¹ "Homotopy type theory: Univalent foundations of mathematics"

Univalent Foundations

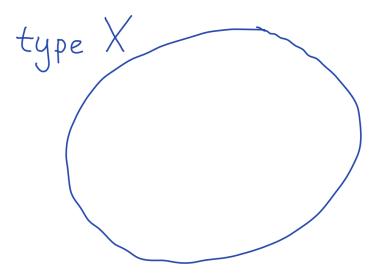
- Univalent foundations (UF) is a flavor of intensional Martin-Löf type theory with the univalence axiom¹
- Univalence axiom: types are identified if they are equivalent

Key features of univalent foundations:

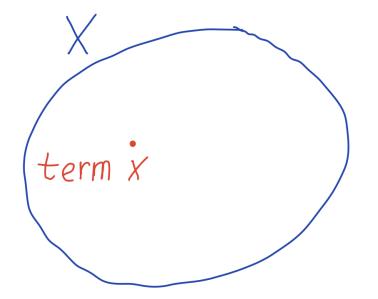
- Identity is proof relevant: not every proof of p = q is the same! Proofs of identity carry information
- Interpretation in homotopy theory: types as spaces, terms as points, proofs of identity as paths

¹ "Homotopy type theory: Univalent foundations of mathematics"

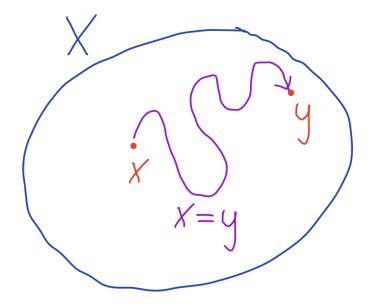
Types as Spaces



Types as Spaces



Types as Spaces



Sameness and Isomorphism in Univalent Foundations

In univalent foundations, the aforementioned mismatch is $\ensuremath{\mathsf{rectified}}^2$

- Groups are equal if and only if they are isomorphic
- Groups have the same properties if and only if they are isomorphic

 $^{^{2}\,^{\}prime\prime}$ "Isomorphism is equality" by Coquand and Danielsson

Sameness and Isomorphism in Univalent Foundations

In univalent foundations, the aforementioned mismatch is $\ensuremath{\mathsf{rectified}}^2$

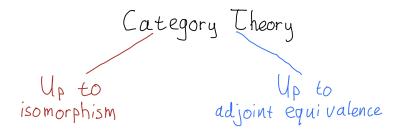
- Groups are equal if and only if they are isomorphic
- Groups have the same properties if and only if they are isomorphic
- The univalence axiom guarantees that algebraic structures are identified up to isomorphism

² "Isomorphism is equality" by Coquand and Danielsson

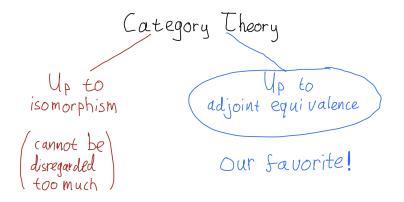
Sameness for Categorical Structures

- However, sameness is more interesting for categorical structures
- For instance, categories, monoidal categories, enriched categories, ...
- Such structures can be identified up to multiple notions of sameness, namely isomorphism and adjoint equivalence

Two Flavors of Category Theory



Two Flavors of Category Theory



Two Kinds of Categories in Univalent Foundations

In univalent foundations, we have two notions of categories³

- Univalent categories who are identified up to adjoint equivalence. Their objects are identified up to isomorphism
- Setcategories who are identified up to isomorphism. Their objects are identified up to equality

 $^{^{\}rm 3}$ "Univalent categories and the Rezk completion" by Ahrens, Kapulkin, and Shulman

Two Kinds of Categories in Univalent Foundations

In univalent foundations, we have two notions of categories³

- Univalent categories who are identified up to adjoint equivalence. Their objects are identified up to isomorphism
- Setcategories who are identified up to isomorphism. Their objects are identified up to equality

In UF: most categories in nature are univalent However, sometimes we meet setcategories

 $^{^{3}\,^{\}prime\prime}$ Univalent categories and the Rezk completion" by Ahrens, Kapulkin, and Shulman

But what about higher categories?

Higher categories come with

- more interesting notions of equivalence
- weakness versus strictness

For instance, we have the following notions of equivalence

- for 2-categories and bicategories: isomorphism, essentially surjective & local isomorphism, biequivalence
- for double categories: isomorphism, vertical equivalence, gregarious equivalence

Our Philosophy

We introduce the **univalence maxim**:

"For each notion of equivalence of a given categorical structure, there exists a tailored definition whose notion of equality in univalent foundation precisely coincides with the chosen notion of equivalence"

Our Paper

Our paper: apply the univalence maxim to double categories

- In mathematical practice, double categories are viewed under multiple notions of equivalence
- Specifically, we designed notions of univalent double category corresponding to these notions of equivalence.
- We also formalized these notions using the Coq/Rocq proof assistant and the UniMath library

Our Paper

Our paper: apply the univalence maxim to double categories

- In mathematical practice, double categories are viewed under multiple notions of equivalence
- Specifically, we designed notions of univalent double category corresponding to these notions of equivalence.
- We also formalized these notions using the Coq/Rocq proof assistant and the UniMath library

In the remainder of the talk, I will discuss

- Preliminaries: what are univalent categories?
- Preliminaries: what are double categories?

Categories in Univalent Foundations

Definition

A type X is called a **set** if for all x, y : X and p, q : x = y, we have p = q.

Definition

A category is called a **setcategory** if its type of objects is a set.

Definition

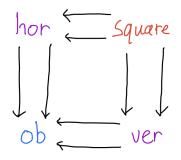
A category is called **univalent** if the map from identities x = y to isomorphisms $x \cong y$ is an equivalence of types.

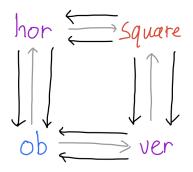
- A double category is given by
 - objects
 - horizontal morphisms
 - vertical morphisms
 - squares

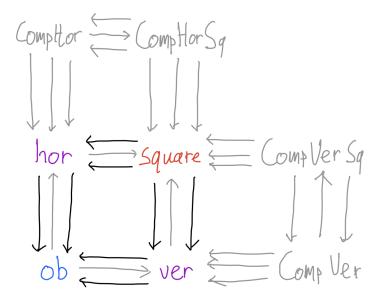
- A double category is given by
 - objects
 - horizontal morphisms
 - vertical morphisms
 - squares

Note:

- We have identity and composition operations for vertical and horizontal morphisms, and for squares
- Composition for morphisms could either be strictly unital and associative or weakly
- So: double categories come with various notions of strictness







Flavors of Double Categories

There are different flavors of double categories:

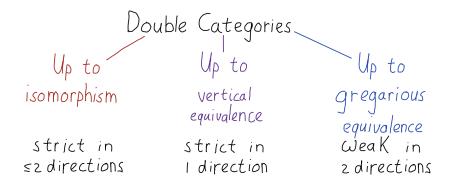
- Strict double categories: strict in both directions
- Pseudo double categories: weak in 1 direction
- Weak double categories: weak in both directions

Examples of Double Categories

	Objects	Horizontal	Vertical	Kind
Rel	sets	functions	relations	strict
$Span(\mathcal{C})$	x, y : C	$x \rightarrow y$	spans in ${\mathcal C}$	pseudo
$Prof_{set}$	setcategories	functors	profunctors	pseudo
Prof _{univ}	univalent cats	functors	profunctors	weak
$Sq(\mathcal{B})$	objects in ${\cal B}$	1-cells	1-cells	weak

Here ${\mathcal C}$ is a category with pullbacks and ${\mathcal B}$ is a bicategory

Sameness of Double Categories



Univalent Double Categories

Definition

A pseudo double category is said to be **univalent**⁴ if

- ► the map from identities x = y of objects to vertical isomorphisms x ≅ y is an equivalence
- ► the map from identities f = g of horizontal morphisms to invertible squares f ≅ g is an equivalence

⁴ "Univalent Double Categories" by Van der Weide, Rasekh, Ahrens, North

Univalent Weak Double Categories

Definition

A weak double category is said to be univalent if

- ► the map from identities x = y of objects to gregarious equivalences x ≅ y is an equivalence
- ► the map from identities f = g of horizontal morphisms to invertible squares f ≅ g is an equivalence
- ► the map from identities f = g of vertical morphisms to invertible squares f ≅ g is an equivalence

Gregarious equivalence: **symmetric** notion of equivalence for objects in a double category (involves both horizontal and vertical morphisms)

⁵ "Enriched categories, internal categories and change of base" by Verity

Univalent Weak Double Categories

Definition

A weak double category is said to be **univalent** if

- ► the map from identities x = y of objects to gregarious equivalences x ≅ y is an equivalence
- ► the map from identities f = g of horizontal morphisms to invertible squares f ≅ g is an equivalence
- ► the map from identities f = g of vertical morphisms to invertible squares f ≅ g is an equivalence

Gregarious equivalence: **symmetric** notion of equivalence for objects in a double category (involves both horizontal and vertical morphisms)

Unifying framework for univalent double categories: Verity double bicategories 5

⁵ "Enriched categories, internal categories and change of base" by Verity

Conclusion

- Higher categories come with various notions of equivalence
- Univalence maxim: for every flavor of equivalence of structured categories, find a suitable notion whose identity corresponds to those equivalences
- We applied this to double categories
- Future research: general statement for the univalence maxim using the framework by Ahrens, North, Shulman, and Tsementzis⁶

Our paper is here: https://drops.dagstuhl.de/entities/ document/10.4230/LIPIcs.CSL.2025.45

⁶ "The Univalence Principle" by Ahrens, North, Shulman, Tsementzis