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Sameness for Structures

Mathematical structures often are identified up to isomorphism

▶ For instance, we identify groups up to isomorphism

▶ We can replace isomorphic groups by each other (as if they
were equal)

▶ All properties that we care about in group theory, are
invariant under isomorphism
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A Case against Set Theoretic Equality

In set theory there is a mismatch regarding sameness of structures

▶ According to the foundations: equality

▶ But in practice: isomorphism

Disadvantage:

▶ we need to carve out a collection of relevant properties

▶ and we need to prove that these are invariant under
isomorphism

Our foundations should do that for us
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Univalent Foundations

▶ Univalent foundations (UF) is a flavor of intensional
Martin-Löf type theory with the univalence axiom1

▶ Univalence axiom: types are identified if they are
equivalent

Key features of univalent foundations:

▶ Identity is proof relevant: not every proof of p = q is the
same! Proofs of identity carry information

▶ Interpretation in homotopy theory: types as spaces, terms as
points, proofs of identity as paths

1“Homotopy type theory: Univalent foundations of mathematics”
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Types as Spaces
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Sameness and Isomorphism in Univalent Foundations

In univalent foundations, the aforementioned mismatch is
rectified2

▶ Groups are equal if and only if they are isomorphic

▶ Groups have the same properties if and only if they are
isomorphic

▶ The univalence axiom guarantees that algebraic structures
are identified up to isomorphism

2“Isomorphism is equality” by Coquand and Danielsson
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Sameness for Categorical Structures

▶ Sameness is more interesting for categorical structures

▶ For instance, categories, monoidal categories, enriched
categories, . . .

▶ Such structures can be identified up to multiple notions of
sameness, namely isomorphism and adjoint equivalence
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Two Kinds of Categories in Univalent Foundations

In univalent foundations, we have two notions of categories3

▶ Univalent categories which are identified up to adjoint
equivalence. Their objects are identified up to isomorphism

▶ Setcategories which are identified up to isomorphism. Their
objects are identified up to equality

3“Univalent categories and the Rezk completion” by Ahrens, Kapulkin, and
Shulman
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But what about higher categories?

Higher categories come with

▶ more interesting notions of equivalence

▶ weakness versus strictness

For instance, we have the following notions of equivalence

▶ for 2-categories and bicategories: isomorphism, essentially
surjective & local isomorphism, biequivalence

▶ for double categories: isomorphism, vertical equivalence,
gregarious equivalence
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The Univalence Maxim

We introduce the univalence maxim:

“For each notion of equivalence of a given categorical structure,
there exists a tailored definition whose notion of equality in

univalent foundation precisely coincides with the chosen notion of
equivalence”
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This talk

This talk: apply the univalence maxim to double categories

▶ In mathematical practice, double categories are viewed under
multiple notions of equivalence

▶ Specifically, we designed notions of univalent double
category corresponding to these notions of equivalence.

▶ We also formalized these notions using the Coq/Rocq proof
assistant and the UniMath library
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Introduction

Univalence Maxim for Categories

Univalence Maxim for Bicategories

Univalence Maxim for Double Categories

Conclusion
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Categories in Univalent Foundations

Definition
A type X is called a set if for all x , y : X and p, q : x = y , we have
p = q.

Definition
A category consists of

▶ a type O

▶ for each x , y : O a set x → y

with the usual identity and composition operations.
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Categories in the Simplicial Sets Model
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Setcategories

Definition
A category is called a setcategory if its type of objects is a set.

Theorem
Identity of setcategories corresponds to isomorphism.
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Setcategories in the Simplicial Sets Model
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Univalent Categories

Definition
A category is called univalent if the map from identities x = y to
isomorphisms x ∼= y is an equivalence of types.

Theorem
Identity of univalent categories corresponds to adjoint equivalence.
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Univalent Categories in the Simplicial Sets Model
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Note:

▶ A large part of category theory is neutral with respect to
univalence versus strictness

▶ Specifically, one can develop it using categories

However, there are constructions where strictness versus univalence
is essential

▶ Kleisli category

▶ Karoubi envelope
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Bicategories

Definition
A bicategory consists of

▶ a type O of objects

▶ for all x , y : O a type x → y of 1-cells

▶ for all f , g : x → y a set f ⇒ g of 2-cells

We also require the usual identity and composition operations.
In addition, composition of 1-cells is weakly unital and associative
(i.e., up to an invertible 2-cell).
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Bicategories in the Simplicial Sets Model

23/42



Equivalence of Bicategories

Bicategories come with multiple notions of equivalence

▶ Isomorphism

▶ Essentially surjective & local isomorphism

▶ Biequivalence
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Setbicategories

Definition
A setbicategory is a bicategory whose types of objects and of
morphisms are sets.

Theorem
Identity of setbicategories correspond to isomorphism of
bicategories.
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Setbicategories in the Simplicial Sets Model
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Univalent 2-Categories

Definition
A univalent 2-category is a category enriched in the category of
setcategories.

Note: each univalent 2-category gives rise to a bicategory

Theorem
Identity of univalent 2-categories corresponds to essentially
surjective pseudofunctors that are local isomorphisms.
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Univalent 2-Categories in the Simplicial Sets Model
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Univalent Bicategories

Definition
We say that a bicategory is

▶ locally univalent if the map from identities f = g to
invertible 2-cells f ∼= g is an equivalence of types for all
f , g : x → y

▶ globally univalent if the map from identities x = y to adjoint
equivalences x ≃ y is an equivalence of types for all objects x
and y

▶ univalent if it is both locally and globally univalent
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Univalent Bicategories in the Simplicial Sets Model
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What Are Double Categories?

A double category is given by

▶ objects

▶ horizontal morphisms

▶ vertical morphisms

▶ squares

Note:

▶ We have identity and composition operations for vertical
and horizontal morphisms, and for squares

▶ Composition for morphisms could either be strictly unital and
associative or weakly

▶ So: double categories come with various notions of
strictness
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Flavors of Double Categories

There are different flavors of double categories:

▶ Strict double categories: strict in both directions

▶ Pseudo double categories: weak in 1 direction

▶ Weak double categories: weak in both directions
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Examples of Double Categories

Objects Horizontal Vertical Kind

Rel sets functions relations strict
Span(C) x , y : C x → y spans in C pseudo
Profset setcategories functors profunctors pseudo
Profuniv univalent cats functors profunctors weak
Sq(B) objects in B 1-cells 1-cells weak

Here C is a category with pullbacks and B is a bicategory
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Sameness of Double Categories

Double categories come with multiple notions of equivalence

▶ Isomorphism

▶ Horizontal equivalence

▶ Gregarious equivalence
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Strict Double Categories

Definition
A strict double setcategory is a double category such that

▶ the types of objects, of horizontal morphisms, and of vertical
morphisms are sets

▶ composition is strictly unital and associative in both directions

Strict double categories are identified up to isomorphism
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Univalent Double Categories

Definition
A univalent pseudo double category is a double category such
that4 if

▶ vertical composition is strictly unital and associative

▶ horizontal composition is weakly unital and associative

▶ the map from identities x = y of objects to vertical
isomorphisms x ∼= y is an equivalence

▶ the map from identities f = g of horizontal morphisms to
invertible squares f ∼= g is an equivalence

Univalent pseudo double categories are identified up to vertical
equivalence

4“Univalent Double Categories” by Van der Weide, Rasekh, Ahrens, North
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Gregarious Equivalences

Gregarious equivalence give us a symmteric notion of equivalence
between objects.

Definition
A gregarious equivalence between objects x and y in a double
category consist of

▶ a horizontal adjoint equivalence h from x to y

▶ a vertical adjoint equivalence v from x to y

such that h and v form a companion pair.

Definition
A gregarious equivalence of double categories is a functor of
double categories that is surjective up to gregarious equivalence,
full on horizontal and vertical 1-cells up to globular invertible
square, fully faithful
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Univalent Weak Double Categories

Definition
A univalent weak double category is double category such that

▶ vertical and horizontal composition are weakly unital and
associative

▶ the map from identities x = y of objects to gregarious
equivalences x ∼= y is an equivalence

▶ the map from identities f = g of horizontal morphisms to
invertible squares f ∼= g is an equivalence

▶ the map from identities f = g of vertical morphisms to
invertible squares f ∼= g is an equivalence

Univalent weak double categories are identified up to gregarious
equivalence
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Summary

▶ Higher categories come with various notions of equivalence

▶ Univalence maxim: for every flavor of equivalence of
structured categories, find a suitable notion whose identity
corresponds to those equivalences

▶ We applied this to categories, bicategories, double categories

▶ We defined suitable notions of univalence and univalence
principles
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A General Perspective on the Univalence Maxim?

Ahrens, North, Shulman, and Tsementzis5 gave a general
framework for univalence principles.
In their framework, one describes structures as follows

T I E

A

O

Examples: categories, bicategories, Verity double bicategories
Future work: general statement of the univalent maxim in this
framework

5“The Univalence Principle” by Ahrens, North, Shulman, Tsementzis
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Companion Pairs

A horizontal morphism h : x → y and a vertical morphism
v : x → y form a companion pair if there are squares

x x

x y

v

h

η

x x

x y

v

h

ε

such that the following squares are identities

x x

x y

y y

v

h

v

η

ε

x x y

x y y

h

v

h

η ε
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