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This talk

Topic of this talk: our paper called

Certifying higher-order polynomial interpretations

What am I going to tell you?

▶ Motivation and context

▶ Brief overview of the results

▶ Some challenges in the formalization
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First things first, do we know higher-order rewriting?

If not, then here is the introduction.
Higher-order rewriting is about:

a style of simply-typed λ-calculae extended with a set of
type-annotated symbols.

So, we look at systems like this

R :=

{
mapF nil → nil

mapF (x :: xs) → (F x) :: mapF xs
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But what do we want?

We want to reason about our systems.

▶ Termination: do our systems run forever?

▶ Confluence: do our systems give a unique outcome?

▶ Complexity: how fast do our systems run?
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And what do we not want?

We don’t want to reason about our systems ourselves.

▶ Systems can be quite large and have many rules

▶ Manual execution is tedious and error-prone

Enter the stage: termination checkers

AProVE, TTT2, NaTT, SOL, Wanda, . . .
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However...

Developing termination checkers is difficult

▶ There could be mistakes in the proof of our theorems

▶ There could be bugs in the implementation

How can we provide guarantee that the output of our termination
checkers is correct?
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So... what did we do?

We introduce Nijn/ONijn. It includes:
▶ the formalization engine

▶ a formalization in Coq of the theory of higher-order rewriting
▶ a formalization of higher-order polynomial interpretation

▶ the translation engine
▶ an OCaml program that turns the output of termination

checkers (like Wanda) into a Coq script.

▶ If that Coq script type checks, then the output was correct.
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Overview of our work
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ONijn’s Output
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Back to Formalization
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So... what did we formalize?

More specifically, we formalized

▶ Higher-order rewriting systems

▶ Basic constructive theory of strong normalization

▶ The polynomial method

We also formalized rule removal, but that is not in the paper.
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Main Challenges

To formalize the theory, we faced the following challenges:

▶ Variables (names are handy, but difficult)

▶ Polynomials (actually, the precise definition of polynomials is
quite interesting)
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Formalizing Variables: Challenges

Challenge: variable names

▶ Variables are identified up to α-equivalence

▶ Variable capture could occur

▶ We need to find fres variables in order to do renaming

Each of these aspects adds complication to the formalization, and
that makes using variable names challenging.
So... what do we do?
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Variable names
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Variable names (according to N.G. de Bruijn)

My name is 1
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De Bruijn Indices

Main ideas:

▶ Represent variables by number

▶ This number tells to which λ the variable refers to
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De Bruijn Indices
Usually, we would write

N.G. de Bruijn would write
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De Bruijn Indices

We would also write

whereas N.G. de Bruijn would write
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Advantages of De Bruijn Indices

▶ There’s no variable capture

▶ There’s no need to rename variable names

▶ α-equality coincides with syntactic equality

This simplifies implementing variables in a proof assistant.
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Disadvantages of De Bruijn Indices

They are not readable.

However,

▶ In our work, they are used in internal representation

▶ In the input, one still writes terms with variable names, and
those are converted to the internal representation

So that’s not my problem, but the proof assistant’s problem

20/26



Disadvantages of De Bruijn Indices

They are not readable. However,

▶ In our work, they are used in internal representation

▶ In the input, one still writes terms with variable names, and
those are converted to the internal representation

So that’s not my problem, but the proof assistant’s problem

20/26



Polynomials

Fuhs and Kop define polynomials as follows
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Polynomials

Fuhs and Kop define polynomials as follows

Here a lot is going on from a logical perspective.
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What’s going on???

▶ We define a set Polτ for every type τ

▶ We identify all Polb for base types b

▶ Note: we want to identify all Polb, because the base type
doesn’t matter

Coq finds the combination of these two steps complicated.
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What did we tell Coq?

Our implementation in Coq:
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Whaaat?

We discuss the implementation details in the paper.
Main idea:

▶ We define a type Polτ for every τ

▶ We define the type of base polynomials, and this type does
not on the base type

▶ We can coerce between the two different types
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But wait! There’s more...

We also did:

▶ develop nice notations, so that the script is kinda readable

▶ formalize rule removal

▶ formalize nontermination

▶ automatically solve polynomial inequalities

All of this is not part of this talk.
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Summary and Conclusion

▶ We made a formalization with the basic results of higher order
rewriting.

▶ We also formalized the polynomial method.

▶ We made an OCaml program that turned the output of a
termination checker into a Coq script.

▶ The certification method is effective: we could verify the
output of Wanda on a set of 46 problems.
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