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Impredicative Encodings

▶ Impredicative encodings allow us to reduce inductive types
to elementary type formers:

∏
, →

▶ This is how one would implement them in Rocq in the past

▶ Only suitable in impredicative settings

Impredicativity: we have an impredicative universe U closed under
= and

∑
and the following rule

Γ ⊢ A Type Γ, x : A ⊢ B x : U
Γ ⊢

∏
(x : A),B x : U
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Impredicative Encoding of Lists

Let E be a type. Define List∗ : U as follows.

List∗ =
∏

(X : U),X → (E → X → X ) → X

We can define:
nil∗ : List∗

nil∗ = λ(X : U)(n : X )(c : E → X → X ), n

cons∗ : E → List∗ → List∗

cons∗ e l = λ(X : U)(n : X )(c : E → X → X ), c e l

recList∗ :
∏

(X : U),X → (E → X → X ) → List∗ → X

recList∗ X n c = λ(l : List∗), l X n c
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But.....

▶ What do we want of inductive types? Induction principles!

▶ For List∗, we can prove the recursion principle with the
expected β-rules

▶ However, induction is not derivable1

List∗ is not an initial algebra, uniqueness does not hold in general.

1Geuvers, “Induction is not derivable in second order dependent type theory”
4/24



Fixing Impredicative Encodings

Awodey, Frey, and Speight: don’t worry, we can fix this 2

▶ Intuition: the type List∗ has “too many inhabitants”

▶ Define a predicate LimList on List∗ (next slide)

▶ Define List to be
∑

(l : List∗), LimList l

▶ One can prove that List is an initial algebra

▶ Initial algebra semantics: List satisfies induction

2Awodey, Frey, Speight, “Impredicative encodings of (higher) inductive
types”
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Fixing Impredicative Encodings

To define LimList:
Suppose we have a commuting square.

1 + E × X 1 + E × Y

X Y

id×f

[nX ,cX ] [nY ,cY ]

f
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1 + E × X 1 + E × Y

X Y

List∗

id×f

[nX ,cX ] [nY ,cY ]

f

recList∗ X nX cX recList∗ Y nY cY

Then the bottom triangle must commute.
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Fixing Impredicative Encodings

We say that l : List∗ satisfies LimList if for all

▶ X : U together with nX : X , cX : E → X → X

▶ Y : U together with nY : Y , cY : E → Y → Y

▶ f : X → Y

▶ pn : f nX = nY
▶ pc :

∏
(e : E )(x : X ), f (cX e X ) = cY e (f x)

we have
f (recList∗ X nX cX l) = recList∗ Y nY cY l
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Other Encodings

Awodey, Frey, and Speight considered

▶ sum types

▶ algebras for a functor on sets (i.e., types for which there’s at
most one proof that x = y)

▶ natural numbers

▶ the circle

They worked in a setting without uniqueness of identity proofs

Note: one can get rid of the truncation assumption3 4

3Echeveste, “Alternative impredicative encodings of inductive types”
4https://homotopytypetheory.org/2018/11/26/

impredicative-encodings-part-3/
7/24
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This work: coinductive types

We look at the dualization

▶ define coinductive types using impredicative encodings

▶ prove suitable coinduction principles, i.e., bisimulation
corresponds to equality

This talk:

▶ we demonstrate the method for streams

▶ we discuss how to extend it to M-types
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Introduction

Streams via Imprecative Encodings

Extension to M-Types

Conclusion
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Main Idea

Recall:

List∗ =
∏

(X : U),X → (E → X → X ) → X

List =
∑

(l : List∗), LimList l

To dualize this construction:

▶ To dualize
∏
, we use existential types

▶ To dualize the subtype: we use quotient types

We define existential types and quotient types via impredicative
encodings.
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Existential Types

Let P : U → U be a type family. Then we have

▶ ∃(X : U),P X : U
▶ pack :

∏
(X : U),P X → ∃(X : U),P X

together with a recursion principle:

rec∃ :
∏

(Y : U),

(
∏

(Z : U),P Z → Y )

→ (∃(X : U),P X )

→ Y

satisfying the expected β- and η-rules.
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Existential Types

Impredicative encoding: we define ∃∗(X : U),P X to be∏
(Y : U), (

∏
(Z : U), (P Z → Y ) → Y ) → Y

We define Lim∃ similarly to LimList and

∃(X : U),P X =
∑

(x : ∃∗(X : U),P X ), Lim∃ x
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Encoding Streams

Let E be a type. We define Stream∗ as follows5.

Stream∗ = ∃(X : U),X × (X → E )× (X → X )

This allows us to define:

▶ hd∗ : Stream∗ → E

▶ tl∗ : Stream∗ → Stream∗

▶ corec :
∏
(X : U), (X → E ) → (X → X ) → X → Stream∗

5Geuvers. “The Church-Scott representation of inductive and coinductive
data”
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Encoding Streams: Tails

Let’s see how to define tl∗ : Stream∗ → Stream∗.

tl∗ s = ?

where ? : Stream∗
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Fixing the Impredicative Encoding for Streams

▶ Just like for lists, we cannot prove a suitable coinduction
principle for Stream∗.

▶ Fix for lists: take a subtype

▶ Fix for streams: take a quotient

15/24



Quotient Types

Using impredicative encodings, we construct quotient types
Let X : U and let R : X → X → U be a relation. Then we have

▶ a type X/R : U
▶ a function cls : X → X/R

For all Y : U and f : X → Y that respects R, there is a unique
recQ Y f making the following diagram commute

X X/R

Y

cls

f
recQ Y f

16/24



Quotient Types

The starting point is the following type:

X/∗R =
∏

(Z : U)(f : X → Z ), resp f R → Z

Here resp f R says that f respects R.

We define LimQ similarly to LimList and

X/R =
∑

(x : X/∗R), LimQ x

17/24



Quotient Types

The starting point is the following type:

X/∗R =
∏

(Z : U)(f : X → Z ), resp f R → Z

Here resp f R says that f respects R.
We define LimQ similarly to LimList and

X/R =
∑

(x : X/∗R), LimQ x

17/24



Recall: Fixing Impredicative Encodings for Lists

To define LimList:
Suppose we have a commuting square.

1 + E × X 1 + E × Y

X Y

List∗

id×f
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recList∗ X nX cX recList∗ Y nY cY
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Recall: Fixing Impredicative Encodings for Streams

Suppose we have a commuting square.

X Y

E × X E × Y

f

[hX ,tX ] [hY ,tY ]

id×f
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Fixing Impredicative Encodings for Streams

Suppose we have a commuting square.

Stream∗

X Y

E × X E × Y

corec X hX tX

f

[hX ,tX ]

corec Y hY tY

[hY ,tY ]

id×f

Then the upper triangle must commute
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Fixing Impredicative Encodings for Streams

Given σ, τ : Stream∗, we say σ ≡ τ if

∃(X : U)(hX : X → E )(tX : X → X )

(Y : U)(hY : Y → E )(tY : Y → Y )
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Extending to M-types

▶ Recall: M-types are final coalgebras for polynomial functors”

P(X ) =
∑

(a : A),B a → X

▶ For M-types, we can take the same steps

▶ We first M∗(A,B) using existential types

▶ Then we define a relation ≡ on M∗(A,B)

▶ We define M(A,B) as the quotient M∗(A,B)/≡
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The Impredicative Encoding for M-types

Let A : U and B : A → U . Define

M∗(A,B) = ∃(X : U),X × (X →
∑

(a : A),B a → X )

23/24
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Conclusion

Key points:

▶ We can use impredicative encodings to define inductive and
coinductive types

▶ For inductive types: use a subtype (Awodey, Frey, Speight)

▶ Dual for coinductive types: use existential and quotient types

▶ This method works for M-types

24/24
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