Univalent Enriched Categories and the Enriched Rezk Completion

Niels van der Weide

Univalent Foundations

We work in univalent foundations (UF)

• Concretely, we assume the **univalence axiom**:

$$(A = B) \simeq (A \simeq B)$$

Identity is proof relevant, and we interpret types as spaces

Univalence Principles

Using the univalence axiom we can prove that

Monoids are identified up to monoid isomorphism:

$$(M = N) \simeq (M \cong N)$$

• Groups are **identified** up to **group isomorphism**:

$$(G = H) \simeq (G \cong H)$$

Rings are identified up to ring isomorphism:

$$(R = S) \simeq (R \cong S)$$

So: sameness of algebraic structures is given by isomorphism

Univalence Principles

Using the univalence axiom we can prove that

Monoids are identified up to monoid isomorphism:

$$(M = N) \simeq (M \cong N)$$

Groups are identified up to group isomorphism:

$$(G = H) \simeq (G \cong H)$$

Rings are identified up to ring isomorphism:

$$(R = S) \simeq (R \cong S)$$

So: sameness of algebraic structures is given by isomorphism But **what about categories**?

Category Theory in UF

In UF, we have two notions of categories

Strict categories: identified up to **isomorphism**, i.e.

$$\mathcal{C} \xrightarrow[]{F}{\longleftrightarrow} \mathcal{D}$$

such that F(G(x)) = x and G(F(x)) = x.

Univalent categories: identified up to adjoint equivalence, i.e.

$$\mathcal{C} \xrightarrow[]{F}{\underset{G}{\longleftarrow}} \mathcal{D}$$

together with natural isomorphisms $F \cdot G \cong id C$ and $G \cdot F \cong id D$ for which the triangle equations hold

Category Theory in UF

In UF, we have two notions of categories

Strict categories: identified up to isomorphism, i.e.

$$\mathcal{C} \xrightarrow[]{F}{\longleftrightarrow} \mathcal{D}$$

such that F(G(x)) = x and G(F(x)) = x.

Univalent categories: identified up to adjoint equivalence, i.e.

$$\mathcal{C} \xrightarrow[]{F}{\longleftrightarrow} \mathcal{D}$$

together with natural isomorphisms $F \cdot G \cong id C$ and $G \cdot F \cong id D$ for which the triangle equations hold Our focus is on **univalent categories** In this talk, we are only concerned with univalent categories

- In category theory, categories usually are identified up to adjoint equivalence
- The univalent perspective offers an interesting new perspective on category theory

Univalent Categories

Definition

Let $\ensuremath{\mathcal{C}}$ be a category.

- We have a map idtoiso sending identities p : x = y of objects x, y : C to isomorphisms x ≅ y
- C is univalent if idtoiso is an equivalence of types

Univalent Categories

Definition

Let $\mathcal C$ be a category.

We have a map idtoiso sending identities p : x = y of objects x, y : C to isomorphisms x ≅ y

C is univalent if idtoiso is an equivalence of types

So:

- ▶ In univalent categories, we have $(x = y) \simeq (x \cong y)$
- Objects of univalent categories are identified up to isomorphism
- This follows common mathematical practice because properties of objects are invariant up to isomorphism
- Univalent categories are identified up to adjoint equivalence

There are many interesting aspects to univalent category theory

 Univalence principle: univalent categories are identified up to adjoint equivalence

¹Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. "Univalent categories and the Rezk completion.", MSCS.

²Ahrens, Benedikt, Paige Randall North, Michael Shulman, and Dimitris Tsementzis. "*The univalence principle*", LICS 2020.

³Van der Weide, Niels. "*The Formal Theory of Monads, Univalently.*", FSCD 2023.

There are many interesting aspects to univalent category theory

- Univalence principle: univalent categories are identified up to adjoint equivalence
- Constructively proving that fully faithful and essentially surjective functors are adjoint equivalences

¹Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. "Univalent categories and the Rezk completion.", MSCS.

²Ahrens, Benedikt, Paige Randall North, Michael Shulman, and Dimitris Tsementzis. "*The univalence principle*", LICS 2020.

³Van der Weide, Niels. "*The Formal Theory of Monads, Univalently.*", FSCD 2023.

There are many interesting aspects to univalent category theory

- Univalence principle: univalent categories are identified up to adjoint equivalence
- Constructively proving that fully faithful and essentially surjective functors are adjoint equivalences
- Rezk completions: every not necessarily univalent category is weakly equivalent to a univalent one (*weak equivalence: eso* and fully faithful)

¹Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. "*Univalent categories and the Rezk completion.*", MSCS.

²Ahrens, Benedikt, Paige Randall North, Michael Shulman, and Dimitris Tsementzis. "*The univalence principle*", LICS 2020.

³Van der Weide, Niels. "*The Formal Theory of Monads, Univalently.*", FSCD 2023.

There are many interesting aspects to univalent category theory

- Univalence principle: univalent categories are identified up to adjoint equivalence
- Constructively proving that fully faithful and essentially surjective functors are adjoint equivalences
- Rezk completions: every not necessarily univalent category is weakly equivalent to a univalent one (*weak equivalence: eso* and fully faithful)
- The usual definition of the Kleisli category does not give rise to a univalent category: instead we use the Rezk completion

Each of these points have been established in the literature $^{1\ 2\ 3}$

¹Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. "*Univalent categories and the Rezk completion.*", MSCS.

²Ahrens, Benedikt, Paige Randall North, Michael Shulman, and Dimitris Tsementzis. "*The univalence principle*", LICS 2020.

³Van der Weide, Niels. "*The Formal Theory of Monads, Univalently.*", FSCD 2023.

Enriched Categories

We like enriched categories ^{4 5}

- An enriched category is a category whose hom-sets are endowed with extra structure
- For instance: every hom-set could be an abelian group or a DCPO
- Have found applications in programming languages ⁶, algebraic topology ⁷, higher category theory

⁴Bénabou Jean. "*Catégories relatives*", C. R. Acad. Sci. Paris, 1965.
⁵Kelly, Max. "*Basic concepts of enriched category theory*", London Math.
Soc. Lecture Note Ser., 64, 1982
⁶Power, John. "*Models for the computational λ-calculus*", MFCSIT 2000.

⁷Goerss, Paul G., and John F. Jardine. *Simplicial homotopy theory*.

Enriched Categories Illustrated

Enriched Categories Illustrated

This Paper

This paper studies univalent enriched categories, and it contains

- A univalence principle for univalent enriched categories
- A proof that fully faithful and essentially surjective enriched functors are adjoint equivalences
- A construction of the Rezk completion of enriched categories and a proof of the universal mapping property
- Univalent enriched Kleisli categories
- The results are formalized in Coq proof assistant using the UniMath library

Monoidal Categories

Definition

A monoidal category V is given by

- an object I : V called the unit
- \blacktriangleright an operation $\otimes: V \rightarrow V \rightarrow V$ called the **tensor**

Unitality and associativity hold up to coherent isomorphism. This means that we have natural isomorphisms $I : I \otimes x \cong x$,

 $r: x \otimes I \cong x$, and $a: x \otimes (y \otimes z) \cong (x \otimes y) \otimes z$ satisfying suitable coherences. In addition, \otimes is required to be functorial.

Enrichments

Suppose that we have

 \blacktriangleright A monoidal category V with unit I and tensor \otimes

Definition

A V-enrichment ${\mathcal E}$ of a category C consists of

▶ a function
$$\mathcal{E}(-,-):\mathsf{C}\to\mathsf{C}\to\mathsf{V}$$

• for all x : C a morphism $id^e : I \to \mathcal{E}(x, x)$

• for all x, y, z : C a morphism

$$\mathsf{comp}: \mathcal{E}(y,z) \otimes \mathcal{E}(x,y) \to \mathcal{E}(x,z)$$

▶ for all $f : x \to y$ a morphism $\overrightarrow{f} : I \to \mathcal{E}(x, y)$ ▶ for all $f : I \to \mathcal{E}(x, y)$ a morphism $\overleftarrow{f} : x \to y$

We require that $\overleftarrow{f} = f$ and that $\overleftarrow{f} = f$, and that these operations preserve identity and composition. Associativity and unitality are given in the next slides

Enrichments: Unitality Axioms

Enrichments: Associativity Axiom

$$\begin{array}{c|c} (\mathcal{E}(y,z)\otimes\mathcal{E}(x,y))\otimes\mathcal{E}(w,x) & \xrightarrow{\mathsf{a}} \mathcal{E}(y,z)\otimes(\mathcal{E}(x,y)\otimes\mathcal{E}(w,x)) \\ & & \downarrow^{\mathsf{id}\otimes\mathsf{comp}(w,x,y)} \\ & & \mathcal{E}(y,z)\otimes\mathcal{E}(w,y) \\ & & \downarrow^{\mathsf{comp}(w,y,z)} \\ & & \mathcal{E}(x,z)\otimes\mathcal{E}(w,x) \xrightarrow{\mathsf{comp}(w,x,z)} \mathcal{E}(w,z) \end{array}$$

Examples of Enrichments

Examples of enrichments:

- Every category has a unique set-enrichment
- The category of DCPOs is enriched over DCPOs
- More general, every cartesian closed category is enriched over itself
- Even more general, every symmetric monoidal closed category is enriched over itself

Enrichments and the Underlying Category

Some standard facts from enriched category theory

- We have 2-categories EnrichCat_V and Cat
- We have a pseudofunctor F from EnrichCat_V to Cat that sends an enriched category E to its underlying category E₀ (objects: same as in E, morphisms I → E(x, y))

Idea:

- ▶ a V-enrichment of C is an object in the fiber of C along F.
- the definition on the previous slide formalizes this idea.

For this reason, our definition is equivalent to the usual one.

Univalent Enriched Category Theory

Now we discuss

- 1. a notion of univalent enriched category and a univalence principle for them
- 2. essentially surjective fully faithful functors are adjoint equivalences
- 3. the Rezk completion of enriched categories

In addition, our proof techniques arise from bicategory theory

Univalent Enriched Categories

Definition

A **univalent** V-**enriched category** is a univalent category together with a V-enrichment.

If we would use Kelly's definition: a V-enriched category is univalent if its underlying category is univalent. This agrees with completeness of enriched ∞ -categories ⁸.

⁸David Gepner and Rune Haugseng. "*Enriched* ∞ *-categories via non-symmetric* ∞ *-operads*", Adv. Math. 2015.

The Univalence Principle

- Theorem: identity of univalent enriched categories corresponds to enriched adjoint equivalence
- We formulate that using univalent bicategories
- More specifically, we show that the bicategory of univalent enriched categories is univalent

⁹Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccolò Veltri, and Niels van der Weide. "*Bicategories in univalent foundations.*", MSCS.

The Univalence Principle

- Theorem: identity of univalent enriched categories corresponds to enriched adjoint equivalence
- We formulate that using univalent bicategories
- More specifically, we show that the bicategory of univalent enriched categories is univalent
- Global univalence: identity of univalent enriched categories corresponds to enriched adjoint equivalence
- Local univalence: identity of enriched functors corresponds to enriched natural isomorphism

⁹Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccolò Veltri, and Niels van der Weide. "*Bicategories in univalent foundations.*", MSCS.

The Univalence Principle

- Theorem: identity of univalent enriched categories corresponds to enriched adjoint equivalence
- We formulate that using univalent bicategories
- More specifically, we show that the bicategory of univalent enriched categories is univalent
- Global univalence: identity of univalent enriched categories corresponds to enriched adjoint equivalence
- Local univalence: identity of enriched functors corresponds to enriched natural isomorphism
- Method: displayed bicategories ⁹

⁹Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccolò Veltri, and Niels van der Weide. "*Bicategories in univalent foundations.*", MSCS.

Displayed Bicategories

- Main idea: a displayed bicategory over a bicategory B represents structure/properties to be added to the objects, 1-cells, and 2-cells of B
- Displayed bicategories allow for modular proofs of univalence
- Every displayed bicategory gives rise to a bicategory by taking the total bicategory
- \blacktriangleright In essence, this generalizes taking \sum -types to bicategories

Displayed Bicategories

- Main idea: a displayed bicategory over a bicategory B represents structure/properties to be added to the objects, 1-cells, and 2-cells of B
- Displayed bicategories allow for modular proofs of univalence
- Every displayed bicategory gives rise to a bicategory by taking the total bicategory
- \blacktriangleright In essence, this generalizes taking \sum -types to bicategories

Enriched categories as a displayed bicategory over UnivCat:

- Objects over C: V-enrichments for C
- ▶ 1-cells over $F : C \to C'$ from \mathcal{E} to \mathcal{E}' : V-enrichments for F
- ► 2-cells over \(\tau\) : F ⇒ G from \(\mathcal{F}\) to \(\mathcal{G}\): proofs that \(\tau\) is V-enriched

Univalent Enriched Category Theory

- 1. a notion of univalent enriched category and a univalence principle for them
- 2. essentially surjective fully faithful functors are adjoint equivalences
- 3. the Rezk completion of enriched categories

Adjoint Equivalences

- Key theorem about equivalences: essentially surjective fully faithful functors are adjoint equivalences
- Usually, proving this requires the axiom of choice.

Proof sketch:

- Suppose $F : C \rightarrow D$ is fully faithful and essentially surjective
- To define an inverse, we need to find a preimage for every y : D
- Such preimages are only unique up to isomorphism (by fully faithfulness)
- However, if C is univalent, then the preimages are unique

Orthogonal Factorization Systems

- We construct the orthogonal factorization system of eso functors and fully faithful functors ¹⁰
- Orthogonality means that we can solve the following lifting problems:

where F_1 is eso and F_2 is fully faithful

▶ By taking $F_1 = F_2$ and $G_1 = G_2 = id$, we get the desired theorem

¹⁰Fosco Loregian and Emily Riehl. "*Categorical notions of fibration*", Expo. Math. 2019.

Univalent Enriched Category Theory

- 1. a notion of univalent enriched category and a univalence principle for them
- 2. essentially surjective fully faithful functors are adjoint equivalences
- 3. the Rezk completion of enriched categories

The Rezk Completion

- Every category C is weakly equivalent to a univalent one
- This is known as the Rezk completion
- \blacktriangleright Universal property: left biadjoint of UnivCat \rightarrow Cat

The Rezk Completion

- Every category C is weakly equivalent to a univalent one
- This is known as the Rezk completion
- \blacktriangleright Universal property: left biadjoint of UnivCat \rightarrow Cat

The Rezk completion of C is constructed as follows:

- ▶ Take the image of $C \rightarrow [C^{op}, Set]$
- Essentially surjective: by definition
- Fully faithful: by the Yoneda lemma
- Univalence: since Set is univalent

The Enriched Rezk Completion

Every enriched category $\mathcal E$ is weakly equivalent to a univalent one

The Enriched Rezk Completion

Every **enriched** category \mathcal{E} is weakly equivalent to a univalent one The Rezk completion of \mathcal{E} is constructed as follows:

- ▶ Take the image of $\mathcal{E} \to [\mathcal{E}^{op}, V]$
- Essentially surjective: by definition
- Fully faithful: by the Yoneda lemma
- Univalence: since V is univalent

We can also prove the universal property Here we need:

- V is symmetric (opposite enriched categories)
- V is closed (self enriched categories)
- V is complete (enriched functor categories)

Conclusion

- We developed enriched categories in univalent foundations
- We proved a univalence principle and we showed that weak equivalences between univalent categories are adjoint equivalences
- We also constructed a Rezk completion and proved its universal property (useful for Kleisli categories)
- Key techniques: enrichments, displayed bicategories