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Abstract. Even though the real numbers are the cornerstone of many
fields in mathematics, it is challenging to formalize them in a constructive
setting, and in particular, homotopy type theory. Several approaches have
been established to define the real numbers, and the most prominent
of them are based on Dedekind cuts and on Cauchy sequences. In this
paper, we study a different approach towards defining the real numbers.
Our approach is based on domain theory, and in particular, the interval
domain, and we build forth on recent work on domain theory in univalent
foundations. All the results in this paper have been formalized in Coq as
part of the UniMath library.

1 Introduction

The real numbers are one of the basic objects in mathematics, with a wide variety
of applications ranging from geometry to probablistic programming. Classically,
there are many established approaches for defining the reals. However, formalizing
real numbers in a constructive setting remains a challenging task.

There are two causes for this difficulty. Firstly, there are many different
representations of real numbers, such as Dedekind cuts and Cauchy sequences
(see the work of Geuvers et al. [23] for discussion of some representations). These
two representations are equivalent to each other in a classical setting, and then
it does not matter which one is used. However, this equivalence depends on
the axiom of countable choice, meaning that these two representations are not
equivalent in a constructive setting.

Depending on the precise foundations, Dedekind cuts and Cauchy sequences
have their own drawbacks. Since Dedekind cuts are defined using power sets, they
raise the universe level in a predicative setting. If one assumes impredicativity
(e.g., propositional resizing), then one can avoid going to a larger universe. For
Cauchy reals, on the other hand, one needs to use either quotients or setoids to
guarantee that the equality relation is correct. As a consequence, one either has
⋆ This paper is dedicated to our supervisor and teacher, Herman Geuvers, on the
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to assume the axiom of countable choice to tame the quotients, or one has to
manually deal with setoids. Note that if one assumes quotient inductive-inductive
types, then one can avoid both of these [25].

Another challenge comes from defining the division operation on the real
numbers. Since we cannot divide by zero, division is a partial operation: its
input consists of a numerator, a denominator, and a proof that the denominator
is distinct from 0. To define this operation constructively, the proof that the
denominator is non-zero should be positive, because this allows us to extract a
suitable approximation. For this reason, constructive versions of the notion of
fields make use of apartness relations.

In this paper we study a constructive formalization of the (Dedekind) real
numbers based on the ideas from domain theory. This approach, inspired by
recent work of De Jong [17,18], allows us to formulate real numbers without
setoids, quotients, or higher inductive-inductive types, and gives us an easier
treatment of apartness, by appealing to generic domain theoretic principles. For
example, the fact that arithmetic operations are strongly extensional (i.e. they
reflect apartness) follow from general facts of domain theory. The main result
is a construction of an ordered field of real numbers in univalent foundations.
While this theorem is not new, the method that we used to prove it, is new.

More specifically, we construct a domain IR of interval reals (sometimes
referred to as “partial real numbers”), and define real numbers to be the maximal
elements of this domain. Classically, the domain IR contains intervals [x, y] ⊆ R
of real numbers ordered by reverse inclusion. From the computational point
of view, an interval [x, y] represents a computation of a real number that only
results in an approximate information, that the real number lies in the interval
[x, y]. The higher we go in the domain, the more information we get, and the
smaller the interval becomes. The maximal elements of this domain are then the
singleton intervals [x, x] representing exact real numbers.

Since our goal is to construct the real numbers from the interval domain,
there are slight differences in our approach. If we would use the definition of IR as
above, then we would get a circular definition. Instead, we construct the domain
IR out of rational numbers using general techniques from domain theory. More
specifically, we define IR as the rounded ideal completion of rational intervals
ordered by reverse strict inclusion. Secondly, the notion of maximality is not
suitable in a constructive setting, and instead, the correct notion of maximality
in a constructive setting is strong maximality [16,17]. For instance, if we stick
with regular maximality, then proving that the maximal elements of IR are the
Dedekind reals requires weak excluded middle.

Just constructing the type of real numbers is, of course, not enough. We show
that the real numbers form a constructive ordered Archimedean field. To do
so, we define a number of arithmetical operations on the real numbers. Domain
theory helps us with that: we can extend operations on rational intervals to
the real numbers. The main challenge then lies in proving that these operations
preserve strongly maximal elements (i.e. they give rise to operations on the real
numbers). To help us with that task, we follow the approach of Bauer and Taylor
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[5], and we identify a number of locatedness properties for interval reals. In
addition, a constructive field comes with an apartness relation that should satisfy
several properties. Here another application of domain theory arises, because
every DCPO comes with an intrinsic apartness relation [17], which is well-behaved
on strongly maximal elements.

Foundations. The results in this paper are formalized in Coq using the UniMath
library [36]. Note that even though UniMath is based on univalent foundations,
this paper is written in the language of set theory, for ease of understanding.
In this paper, we also assume propositional resizing, which says that every
proposition in universe level is equivalent to one in the lowest universe.

The formalization can be found online in a “frozen” state at https://zenodo.
org/doi/10.5281/zenodo.10664690. The entry point to our results is the mod-
ule UniMath.OrderTheory.DCPOs.Examples.Reals. Our formalization is mostly
complete, with several admitted results about interval arithmetic, and we are in
the proceess of merging the formalization into the upstream UniMath repository.

Synopsis. The rest of the paper is organized as follows. In Section 2 we recall the
preliminaries on domain theory. After that, we construct the DCPO of interval
reals in Section 3, and we define the real numbers to be the strongly maximal
interval reals. In Section 4, we characterize strong maximality of interval reals via
a notion of locatedness. In Section 5 we define arithmetic operations on IR, and
we show that they restrict to operations on R. We show that the real numbers
form a constructive ordered field in Section 6. Finally, in Section 7 we conclude
and discuss related work.

2 Preliminaries on Domain Theory

In this section we briefly recall the notions from domain theory needed in the
remainder of the paper. Most the material here is standard (we refer an interested
reader to a classical text on domain theory [1]), or, when mentioned, to the recent
work of De Jong on constructive domain theory [17].

2.1 (Continuous) DCPOs

A directed-complete partial order (DCPO) is a set D together with a partial
order ⊑ such that every directed subset X of D (i.e. a subset that contains upper
bounds for each pair of elements) has the least upper bound (lub)

⊔
X. Morphisms

between DCPOs are Scott-continuous functions, i.e. monotone functions that
preserve the least upper bounds.

Remark 1. Type theoretically, a directed set in a partial order (D,⊑) is given by
a type I and a function f : I → D such that I is inhabited (written ∥I∥), and
that {f(x) | x ∈ I} is directed in the usual sense. Notice that here we follow De
Jong and Escardó [27] and take directed sets to be inhabited. In particular, this
means that DCPOs do not have to be pointed.

https://zenodo.org/doi/10.5281/zenodo.10664690
https://zenodo.org/doi/10.5281/zenodo.10664690
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Given two elements x, y ∈ D of a DCPO, we say that x is way below y,
denoted as x ≪ y, if for any directed set X ⊆ D, if y ⊑

⊔
X, then there exists

some element b ∈ X for which x ⊑ b.
We are particularly interested in DCPOs that are “generated” by the way

below relation. We say that a DCPO D is continuous if for every x ∈ D the set
{y ∈ D | y ≪ x} is directed and its supremum is x itself. There is a systematic
way of constructing continuous DCPO out of what is called an abstract basis.

Definition 2. An abstract basis is a set B together with a transitive relation
≺ that satisfies the following interpolation property:

– for each a ∈ B there is a element b ∈ B such that b ≺ a;
– for each a1, a2, b ∈ B such that a1, a2 ≺ b, there is an interpolant a ∈ B such

that a1, a2 ≺ a ≺ b.

Given an abstract basis (B,≺), we construct a DCPO RIdl(B,≺) in which the
way below relation is induced by the ≺ relation of the basis.

Definition 3. A rounded ideal is a set X ⊆ B of basis elements that is
inhabited, downwards closed, and contains upper bounds: if a1, a2 ∈ X then there
exists some b ∈ X such that a1, a2 ≺ b.

The rounded ideal completion of B is defined to be the DCPO whose
underlying set consists of all rounded ideals over the basis (B,≺), and whose
order is given by the subset relation.

There is a monotone map from B to RIdl(B,≺) sending a basis element b to the
principal rounded ideal ↓(b) = {a ∈ B | a ≺ b}. There are some important facts
about rounded ideal completions that we use.

Lemma 4. Every element X ∈ RIdl(B,≺) is the least upper bound of the basis
elements included in it: X =

⋃
{↓ b | b ∈ X}.

Lemma 5. The way below relation on RIdl(B,≺) is “induced” by ≺. In the sense
that for any elements a, b of the basis we have:

– If a ≺ b then ↓ a ≪ ↓ b;
– If a ∈ X then ↓ a ≪ X;
– If X ≪ Y then there exists b ∈ Y such that X ⊆ ↓ b.

The rounded ideal completion satisfies the universal property which allows us
to lift monotone functions from the basis to the ideal completion.

Definition 6. Let f : B → Y be a function from an abstract basis B to the
DCPO Y such that for all a, b ∈ B with ↓ a ⊆ ↓ b, we have f(a) ⊑ f(b). Then we
extend f to a Scott-continuous function f∗ : RIdl(B,≺) → Y defined as

f∗(X) =
⊔

{f(b) | b ∈ X}.

The extension commutes with the principal ideals up to inequality, which means
that f∗(↓ b) ⊑ f(b). It is the greatest function with such property. More specifi-
cally, for every Scott-continuous function g that satisfies g(↓ b) ⊑ f(b) we have
g(X) ⊑ f∗(X) for any ideal X.
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2.2 Scott Topology and Apartness

Every DCPO comes with an intrinsic notion of topology, in which the open sets
are Scott-open. A set X ⊆ D is Scott-open if it is upwards closed and whenever⊔
Y ∈ X then there is already some y ∈ Y for which y ∈ X. This forms a

topology in the usual sense, and if the DCPO D is a rounded ideal completion,
then the topology is generated by the principal open sets over the principal ideals.
Using the Scott topology, we define the intrinsic apartness relation. We say that
x is apart from y, written x#y, if there exists a Scott open set containing x and
not containing y, or the other way around.

Intrinsic apartness is irreflexive and symmetric, but in general it is not
tight or cotransitive (see [17, Theorem 58]). A stronger notion, also stemming
from topology is Hausdorff-separatedness. The elements x and y are Hausdorff-
separated if there are disjoint Scott-open sets S1, S2 such that x ∈ S1 and y ∈ S2.
We have the following characterization of Hausdorff-separatedness in continuous
DCPOs.

Proposition 7 ([18, Lemma 76]). Two elements x, y ∈ D of a continuous
DCPO with a basis B are Hausdorff-separated iff there are elements a, b ∈ B such
that (i) a ≪ x, (ii) b ≪ y, (iii) there is no z ∈ D such that a ≪ z and b ≪ z.

Proposition 8. Scott continuous maps reflect apartness. More specifically, given
a Scott continuous map f : D1 → D2 and elements x, y : D1 such that f(x)#f(y),
we have x#y.

2.3 Strongly maximal elements.

The right notion of maximality in a constructive setting is strong maximality. In
the context of impredicative set theory it was studied by De Jong [17], based on
a notion of constructively maximal elements, studied in classical meta-theory by
Smyth [34]. The work by De Jong carries over to homotopy type theory with
resizing without any essential modification.

Definition 9 ([17, Definition 70]). An element x ∈ D of a DCPO is strongly
maximal if for any u, v ∈ D with u ≪ v either u ≪ x or v and x are Hausdorff-
separated. If D is a continuous DCPO, then it suffices to consider the elements
u, v from a basis of D.

Proposition 10 ([17, Proposition 80]). Strongly maximal elements in a
continuous DCPO are maximal. If x ∈ D is strongly maximal and x ⊑ y, then
x = y.

Proposition 11 ([17, Proposition 85]). The relative Scott topology on the
strongly maximal elements in a continuous DCPO is Hausdorff, and the intrinsic
apartness on strongly maximal elements coincides with Hausdorff-separatedness.

Proposition 12. The intrinsic apartness relation is tight and cotransitive on
strongly maximal elements. That is to say, ¬(x#y) implies x = y, and x#y
implies x#z ∨ z#y.
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In [17], Proposition 12 is proven by showing that every strongly maximal
element is sharp (see [17, Definition 59] for the precise definition), and that the
corresponding statement holds for sharp elements.

3 The Interval Domain

In this section we construct the set R of real numbers, using the domain-theoretic
techniques described in Section 2. To do so, first define the set of open rational
intervals, and we show that it gives rise to an abstract basis in Proposition 13.
We also define the arithmetical operations on rational intervals following [31],
which we use in Section 5 to define arithmetic operations on real numbers. The
set of interval reals is defined to be the rounded ideal completion of the rational
intervals (Definition 14), and the real numbers are defined to be the strongly
maximal interval reals (Definition 15).

An (open, non-empty) rational interval is a pair I = (d, u) ∈ Q×Q such that
d < u. We write I and I for left and right endpoints of I = (d, u), i.e. d and u
respectively. By IQ we denote the set of rational intervals. We write |I| for the
size I − I of the interval I.

Proposition 13. We have an abstract basis whose underlying set consists of
rational intervals. The order relation of this abstract basis is given by reverse
strict inclusion ⊋, which is defined by

I ⊋ J ⇐⇒ I < J ∧ J < J.

To prove Proposition 13, we need to show that (IQ,⊋) satisfies the two
interpolation properties in Definition 2. If we have an interval I, we must find a
J such that J ⊋ I. We can take J to be (I − 1, I + 1). Furthermore, if we have
intervals I1, I2,K such that I1 ⊋ K and I2 ⊋ K, we need to find an interval J
such that I1 ⊋ J , I2 ⊋ J , and K ⊋ J . We define J as follows:

J = (
max{I1, I2}+K

2
,
min{I1, I2}+K

2
).

In Section 5, we define operations on real numbers, and for that, we need
several arithmetical operations on real intervals [31]. Chiefly among them are
various algebraic operations that are lifted from Q to IQ. Some of the operations
are given in Figure 1, and the full implementations are found in the Coq source
code. Not all arithmetical laws hold for the operations in Figure 1. For example,
addition and multiplication on intervals is associative and commutative. However,
distributivity and neutrality for addition and multiplication do not hold.

Next we define the interval domain. Usually, one first defines the real numbers,
and then the interval domain is defined to be the collection of real intervals.
One can then show that this is a continuous DCPO, and that the set of rational
intervals forms a basis for this DCPO. Our definition is reversed compared to
this approach: using the fact that the rational intervals form an abstract basis,
we can take the rounded ideal completion to acquire a continuous DCPO with
that basis.
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I + J = (I + J, I + J) −I = (−I,−I)

I ∗ J = (minP,maxP ) where P = {I · J, I · J, I · J, I · J}
I ∨ J = (max{I, J},max{I, J}) I ∧ J = (min{I, J},min{I, J})

I <IQ J iff I < J

Fig. 1. Selected operations on the rational intervals.

Definition 14. The interval domain is defined to be the rounded ideal comple-
tion RIdl(IQ,⊋) of open rational intervals ordered by reverse strict inclusion. We
denote the interval domain by (IR,⊆), and call elements of IR interval reals.

Note that we can recover the real numbers from IR. This is because the real
numbers can be identified with intervals consisting of only one element. Those
intervals are the largest with respect to reverse inclusion. As such, we recover
the real numbers by looking at the strongly maximal elements.

Definition 15. The set R of real numbers is defined to be the collection of
strongly maximal elements of IR.

Note that from Definition 15 we directly obtain the apartness relation on
the real numbers. This is because every DCPO has an apartness relation on its
strongly maximal elements that is irreflexive, symmetric, cotransitive, and tight
by Proposition 12.

4 Strong Maximality and Locatedness

To construct a real number using Definition 15, we need to do two things. We must
describe an interval real (i.e. an element of IR), which describes all approximations
to the real number, and then we must show this interval real is strongly maximal.
Giving a direct proof for such facts is rather complicated, and for that reason,
we give a characterization for strong maximality of interval reals in this section.

The characterization of strong maximality that we use, is based on locatedness.
Our notion of locatedness is similar to the locatedness condition of Dedekind
cuts, but phrased using intervals.

Definition 16. A interval real x ∈ IR is order located (or simply located) if
for any rational interval I there exists a rational interval J ∈ x such that either
I < J or J < I.

Before we show that order locatedness coincides with strong maximality, we
will need the following characterization of Hausdorff separatedness.

Lemma 17. Interval reals x and y are Hausdorff separated iff there are non-
intersecting rational intervals I, J such that I ∈ x and J ∈ y.



8 Niels van der Weide and Dan Frumin

Theorem 18. An interval real x is order located if and only if x is strongly
maximal.

Proof. Suppose that x is order located and let I, J be intervals such that ↓ I ≪ ↓ J
(which, by Lemma 22 is equivalent to I ⊋ J), and we are to decide if ↓ I ≪ x
(i.e. I ∈ x) or ↓ J and x are Hausdorff-separated.

Since I ⊋ J , we can consider an interval L = (I, J). By order locatedness,
there exists an interval K ∈ x such that either L = I < K or K < L = J . In the
latter case we know that K and J are completely disjoint: by Lemma 17 x and J
are Hausdorff-separated. In the former case, we consider an interval R = (J, I),
and locate it within x. We get an interval K ′ ∈ x such that either R = J < K ′ or
K ′ < R = I; we again consider two cases. In the latter case we have K ′ < I and
I < K. Since x is a rounded ideal, there exists an interval N ∈ x which refines
both K and K ′: K,K ′ ⊋ N . It follows that I ⊋ N , and, therefore I ∈ x.

In the former case we have J < K ′. Then J and K ′ are disjoint, and it follows
that x and ↓ J are Hausdorff-separated by Lemma 17.

For the converse, we suppose that I is an interval, and we need to locate it
within x. We can always find a smaller interval I ⊋ J ; so ↓ I ≪ ↓ J . By strong
maximality, either ↓ I ≪ x (equivalently, I ∈ x), or x and ↓ J are Hausdorff
separated.

In the former case, by roundedness of x, there exists some interval K ∈ x
such that I ⊋ K, and it follows that I < K.

In the latter case, by Lemma 17 there are J1 ⊊ J and J2 ∈ x such that J1
and J2 do not intersect. If J1 lies to the left of J2, then I < J < J1 ≤ J2. If J1
lies to the right of J2, then J2 ≤ J1 < J < I.

From Theorem 18, we directly obtain that our real numbers are equivalent to
the Dedekind real numbers, which was originally proven by De Jong in [16].

Corollary 19 ([16, Theorem 102]). The set of real numbers from Definition 15
is equivalent to the set of Dedekind real numbers.

As an application of Theorem 18, we construct the inclusion from the rational
numbers to the real numbers. First, we show that every rational number gives
rise to an interval real.

Definition 20. Let q be a rational number. We define an interval real ⌈q⌉ to be
the supremum:

⋃
{↓ I | q ∈ I}.

Note that the supremum exists in Definition 20, because the set {↓ I | q ∈ I} is
directed. Intuitively, this definition says that approximations of ⌈q⌉ are given by
intervals that contain q.

Before we show that ⌈q⌉ actually gives rise to a real number, we characterize
the way below relation for ⌈q⌉.

Lemma 21. For all q ∈ Q and rational intervals I, we have ↓ I ≪ ⌈q⌉ iff q ∈ I.

Proof. Follows from Lemma 5 and the definition of ⌈−⌉.
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If x ∈ IR, then from Lemma 5 we know that I ∈ x implies ↓ I ≪ x, as in
any continuous DCPO. However, for IR we also have the converse, giving us a
characterization of the approximation of interval reals by rational intervals.

Lemma 22. For any I ∈ IQ and any x ∈ IR, we have ↓ I ≪ x iff I ∈ x.

Proof. Follows from the density of rationals; see also [17, Lemma 100].

Now we show that ⌈q⌉ actually is strongly maximal.

Proposition 23. For any q ∈ Q, the interval real ⌈q⌉ is strongly maximal.

Proof. We use Theorem 18 and show that ⌈q⌉ is order located. Given an interval
I ∈ IR, we know that either I < q or q < I, by cotransitivity of rational numbers.

Without loss of generality, suppose that I < q. Then we consider an interval
J = ( I+q

2 , q + 1). By Lemmas 21 and 22, we have that J ∈ ⌈x⌉. Furthermore,
I < J = I+q

2 , concluding the proof.

5 Real Arithmetic

So far we have defined the set R of real numbers and the inclusion Q → R. In this
section we define the arithmetic operations (addition, multiplication, subtraction,
and division) on R, the order <, and the lattice operations. More specifically, we
show that R forms an Archimedean field.

Definition 24 ([35, Definition 11.2.7]). An ordered field consists of a set
F together with elements 0 ∈ F and 1 ∈ F , binary operations +, ∗,min,max :
F → F → F , binary relations ≤, <,#, and operations − : F → F and (−)−1 :
{x ∈ F | x#0} → F . The operations need to satisfy a number of standard laws
[35, Definition 11.2.7].

A field F is called Archimedean if for all x, y ∈ F such that x < y, there
merely exists a q ∈ Q such that x < q < y.

To define these operations on R, we first lift a corresponding operation on
intervals from Figure 1 to the level of interval reals. After that, we show that the
lifted operation maps real numbers to real numbers, i.e. they preserve strongly
maximal elements. To prove that these operations preserve strong maximality, we
use ideas from Bauer and Taylor [5]. More specifically, we define alternative notions
of locatedness of interval reals, namely arithmetic locatedness and multiplicative
locatedness, that are used to prove locatedness. We define all the operations in
the same three steps: 1. identify the corresponding operation rational intervals;
2. lift the operation to interval reals; 3. prove that the lifted operation preserves
strong maximality. To lift the functions to real numbers, we use the extension
from Definition 6. We define a monotone function f : IQn → IQ, and we define
its extension f∗ : IRn → IR as follows

f∗(x1, . . . , xn) =
⋃

{↓ (f(I1, . . . , In)) | I1, . . . , In ∈ x1, . . . xn}.

We use the following properties of the lifting of operations.
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Lemma 25. The following statements hold.

– f∗(↓ I1, . . . , ↓ In) ⊆ ↓ f(I1, . . . , In);
– If I1 ∈ x1, . . . , In ∈ xn then f(I1, . . . , In) ∈ f∗(x1, . . . , xn);
– If K ∈ f∗(x1, . . . , xn) then there are I1 ∈ x1, . . . , In ∈ xn such that

f(I1, . . . , In) ⊊ K.

We now show how to use this lifting to define operations on interval reals, and
show that they preserve strong maximality.

Additive Inverse. We start by defining the additive inverse function −x. It is
a lifted extension of the corresponding function on the rational intervals:

−x =
⋃

{↓−I | I ∈ X}.

Lemma 26. If x ∈ IR is order located, then so is −x.

Proof. Suppose that I ∈ IQ. We are to locate I within −x. First, we use order-
locatedness of x w.r.t. −I: there exists J ∈ x such that −I < J ∨ J < −I. Then,
by Lemma 25 −J ∈ −x, and, furthermore, I < −J = −J or, similarly, −J < I.

Addition. Addition on reals is defined as follows

x+ y =
⋃

{↓ (I + J) | I ∈ x, J ∈ y}.

In order to show that addition preserves strong maximality, we use the auxiliary
notion of arithmetic locatedness.

Definition 27. An interval real x ∈ IR is arithmetically located if for any
rational number q > 0 there is a rational interval I ∈ x such that the interval
size |I| satisfies |I| < q.

Proposition 28. Let x be arithmetically located, and y be order located. Then
x+ y is order located.

Proof. Let I be an interval that we are to locate in x+y. By arithmetic locatedness,
there exists a J0 ∈ x with |J0| < |I|. Writing it out, we have J0 − J0 < I − I, or,
equivalently, I − J0 < I − J0.

We then use order locatedness of y with respect to the interval (I−J0, I−J0).
We get an interval J1 ∈ y such that either I−J0 < J1 or J1 < I−J0. Equivalently,
I < J0 + J1 or J0 + J1 < I. And, furthermore, by Lemma 25 we have J0 + J1 ∈
x+ y, thus locating I in x+ y.

If we show that every order located interval real is arithmetically located,
that would conclude the construction of the addition operation on reals. In order
to show this, we use the following auxiliary lemma.
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Lemma 29. Let x ∈ IR be order located and let I ∈ x. Suppose that J0, J1 are
overlapping intervals that cover I. Then there exists J ′ ∈ x such that either
J0 ⊋ J ′ or J1 ⊋ J ′.

Proposition 30. If x ∈ IR is order located, then it is arithmetically located.

Proof. Suppose that x is order located and q > 0 is a rational number. By
roundedness, x contains some interval I ∈ x. Then we can cover the whole
interval I with n overlapping intervals of size q, for some natural number n. We
then use induction on n and Lemma 29 to find some interval in x that is strictly
included in one of the covering intervals. By construction, the size of that interval
will be strictly smaller than q.

Multiplication. For defining multiplication and proving that it preserves strong
maximality, we follow the same approach as for addition. As the operation itself
we take the lifting

x ∗ y =
⋃

{↓ (I ∗ J) | I ∈ x, J ∈ y}.

In order to show that this operation preserves strong maximality we use an
intermediate notion of multiplicative locatedness:

Definition 31. An interval real x is multiplicatively located if for any rational
interval J that lies to the right of 0 (i.e. 0 < J), there exists an interval K ∈ x
such that K lies to the right of 0, and J ·K < J ·K. Equivalently, we can say
K/K < J/J .

Lemma 32. Suppose that x is an order located interval real that is positive (i.e.
there is some I ∈ x that lies to the right of 0). Then x is multiplicatively located.

While the lemma above is stated only for positive reals, by playing around with
signs and using multiplicative locatedness we can show the following.

Lemma 33. Suppose that x and y are strongly maximal interval reals. Then
x ∗ y is strongly maximal as well.

Multiplicative inverse. The multiplicative inverse requires special treatment,
because it is defined only for interval reals apart from zero. For this reason, we
do not define the multiplicative inverse by lifting an operation, but instead, we
define it as a particular supremum.

We define a reciprocal of rational intervals as I−1 = (I
−1

, I−1), and we define
the reciprocal of interval reals as the following supremum:

x−1 =
⋃

{↓ (I−1) | I ∈ x ∧ I#0}.

This is the supremum over the set {↓ (I−1) | I ∈ x ∧ I#0} ranging over the
intervals in x that do not contain 0 (denoted, abusing the notation slightly, as
I#0). This set is always semidirected; furthermore it is inhabited, and therefore
directed, whenever x is apart from zero.
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Remark 34. The operation I−1 is only defined for intervals that do not contain
zero – otherwise the operation does not map intervals to intervals. In type theory
this is represented by the signature

(−,−)−1 : (
∑
I:IQ

I#0) → IQ.

The reciprocal not only takes an interval as its argument, but also a proof that it
is apart from 0. That means that the directed family in the definition of x−1 is
represented in type theory as a function with the signature (

∑
I∈x I#0) → IR,

given by (I,H) 7→ ↓
(
(I,H)−1

)
.

Similarly, the inverse operation for interval reals takes a proof of apartness
from 0 as one of the arguments.

To show that the multiplicative inverse maps real numbers to real numbers,
we prove the following:

Lemma 35. If x is order located and apart from 0, then x−1 is also order located.

Lattice Structure. Finally, we define the lattice operation on the real numbers
(minimum, maximum), and the strict order. The strict order is defined as follows:
given interval reals x, y, we say that x < y if there are intervals I ∈ x, J ∈ y
such that I <IQ J . For the minimum and maximum, we use the same approach
as for addition. We show that these these operations preserve strongly maximal
elements, using only order locatedness.

6 Arithmetic Laws

Finally, we prove that the real numbers R, together with the operations defined in
the previous section, form a constructive ordered field. Some of the constructive
field laws follow automatically: intrinsic apartness is reflected by Scott-continuous
functions by Proposition 8. Thus, addition and multiplication automatically
reflect apartness, as they are defined as Scott continuous extensions of operations
on rational intervals. For the remaining constructive field laws, we need to put in
a bit more work. Due to space reasons, we only sketch the proof for associativity
of addition, and we note that that similar ideas are used to prove the other laws.

Proposition 36. For any x, y, z ∈ R we have (x+ y) + z = x+ (y + z).

Proof. First of all, we notice that since we are working with strongly maximal
elements, in order to show an equality it suffices to find a common upper bound
h such that (x+ y) + z ⊆ h and x+ (y + z) ⊆ h. Secondly, since we are working
with an expression with three variables x, y, z, we introduce an intermediate
ternary version of addition: we write h(x, y, z) for an “unbiased” addition that
sums the three numbers together directly

h(x, y, z) =
⋃

{↓ (I1 + I2 + I3) | I1 ∈ x, I2 ∈ y, I3 ∈ z}.
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This approach of using “unbiased” operations is inspired by the “unbiased”
monoidal products in monoidal categories [29, Section 3.1]; a similar trick was
used to show associativity of smash products in the context of homotopy type
theory [30].

Let us then look at how to show (x+ y) + z ⊆ h(x, y, z) for all x, y, z. Since h
is defined as an extension of a monotone function on the basis, by the universal
property it suffices to show (↓ I1 + ↓ I2) + ↓ I3 ⊆ ↓ (I1 + I2 + I3). Note that the
addition symbol on the right hand side represents addition of rational intervals,
not addition of reals. This inclusion then holds by Lemma 25.

Theorem 37. R is an Archimedean constructive ordered field.

7 Conclusions and Related Work

In this paper we presented a formalization of real numbers in the setting of
univalent mathematics. We constructed the set of real numbers and we showed
that it is an ordered archimedean field. In our formalization we took a novel
approach to formulating Dedekind reals using domain theory, and several results
were proven more generally. In the future work we would like to show completeness
of R as well.

The topic of constructive real numbers and its formalization has received
a lot of attention and has been studied broadly, going back all the way to the
pioneering work of Bishop [7,8]. For an overview, see, for example, the surveys
[23] (with a focus on constructivity, type theory and domain theory) and [9] (with
a focus on formalization). We finish our paper by discussing selected related work
on interval reals and domain theory in univalent foundations, and on constructive
formalizations of real numbers in type theory.

Domain theory and interval reals. The domain IR of interval real numbers
was used to study computations with real numbers in the setting of domain
theory, for example in semantics of RealPCF [20,19,21]. The interval domain has
also been studied in the context of realizability [4], for the purposes of extracting
programs for computing with exact real numbers.

In terms of formalizations of domain theory in type theory, we build upon
the recent work of De Jong and Escardo on domain theory in the context of
univalent mathematics [16,15,18,27].

Finally, while not directly related to interval reals, we would like to mention
the work of Bauer and Taylor on constructing Dedekind reals in the context of
Abstract Stone Duality [5]. Their work has also served as an inspiration to ours,
especially with regard to different notions of locatedness.

Formalization of reals in type theory. Specifically in the context of homotopy
type theory/univalent foundations, real numbers have already been considered
(with both Dedekind and Cauchy flavors) in the HoTT book [35, Chapter 11],
but were not formalized at the time. Dedekind reals were later formalized as part
of the UniMath library by Catherine Lelay. The formalization of Cauchy reals
usually requires use of quotients and/or countable choice. However, the approach
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in the HoTT book sidesteps those issues by using a higher inductive-inductive
types. This approach has been extended to generic metric space completion and
formalized in [25], and it was further used for formalizing synthetic topology
[6]. Another approach to the real numbers in univalent foundations is given by
the Escardó-Simpson reals [20], which are equivalent to the Cauchy reals [11].
Those have been formalized by Ghica and Ambridge [24,2]. Booij also studied
locators in univalent foundations [10]. Locators are an additional structure on
top of a constructive field, such as the Dedekind reals, and it allows one to assign
a decimal expansion to a Dedekind real. Booij also showed that a Dedekind real
is a Cauchy real if and only if there is a locator for that number.

It is also worth mentioning the formalization projects from Nijmegen related
to real numbers. Initially, as part of the FTA project [13] (formalization of the
fundamental theorem of algebra), the real numbers were defined axiomatically,
as an abstract interface, to facilitate proof modularity. Later, Niqui and Geuvers
[22] developed an implementation of that interface, based on Cauchy reals. This
implementation became the basis for FTA, and later became a part of C-CoRN
[14], but the implementation was not suitable for extraction and evaluation.
O’Conor then proposed another formalization of Cauchy reals [32,33] aimed at
extracting and running programs. This approach was further refined by Krebbers
and Spitters [28], utilizing the type class approach for formalizing algebraic
hierarchies.

Among other formalizations, there is the ALEA Coq library [3], which builds
up monadic semantics for a probabilistic programming language based on the
real interval. However, the real interval is axiomatized as an abstract type and is
not implemented. Another formalization of reals in Coq [12] defines real numbers
through (coinductive) infinite streams. The formalization of real numbers in
LEGO [26] is similar to ours, as it is based on (converging) nested rational
intervals, but the general setting is quite different, and they forgo domain theory.
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