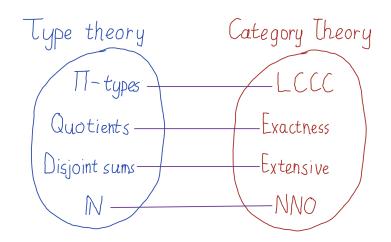
The Internal Language of Univalent Categories

Niels van der Weide

LICS25, June 23, 2025

Link to slides: https://nmvdw.github.io/pubs/lics2025.pdf

Type Theory and Category Theory



Internal Language Theorems

Theorem (Theorem 6.1 in Clairambault&Dybjer 2014¹)

We have a biequivalence betweeen the bicategories

- ► CwF[∑],=ext</sup>: democratic comprehension categories with extensional identity types and sigma types
- FinLim: finitely complete categories

This biequivalence can be extended to \prod -types and LCCCs

Note: this corrects a result by Seely² using ideas by Hofmann³

¹Clairambault, Pierre, and Peter Dybjer. The biequivalence of locally cartesian closed categories and Martin-Löf type theories.

²Seely, Robert. Locally Cartesian closed categories and type theory

³Hofmann, Martin. On the interpretation of type theory in locally cartesian closed categories

Internal Language Up To Isomorphism

Final sentence of the paper by Clairambault and Dybjer:

So we can ask whether Martin-Löf type theory with extensional identity types, ∑- and ∏-types is an internal language for lcccs? And we can answer, yes, it is an internal language 'up to isomorphism'.

Internal Language Up To Isomorphism

Final sentence of the paper by Clairambault and Dybjer:

So we can ask whether Martin-Löf type theory with extensional identity types, ∑- and ∏-types is an internal language for lcccs?

And we can answer, yes, it is an internal language 'up to isomorphism'.

Univalent Foundations

- ► **Univalent foundations**⁴ is a version of Martin-Löf Type Theory extended with the **univalence axiom**
- ► Univalence axiom: identity of types is the same as equivalence

⁴The Univalent Foundations Program. Homotopy type theory: Univalent foundations of mathematics

Univalent Foundations

- ► Univalent foundations⁴ is a version of Martin-Löf Type Theory extended with the univalence axiom
- ► Univalence axiom: identity of types is the same as equivalence
- Univalent foundations allows for a more refined view of identity of structures: structures are identified up to equivalence
- ► For instance: groups/ring are identified up to isomorphism

⁴The Univalent Foundations Program. Homotopy type theory: Univalent foundations of mathematics

Univalent Foundations

- ► Univalent foundations⁴ is a version of Martin-Löf Type Theory extended with the univalence axiom
- ► Univalence axiom: identity of types is the same as equivalence
- Univalent foundations allows for a more refined view of identity of structures: structures are identified up to equivalence
- ► For instance: groups/ring are identified up to isomorphism
- Properties are automatically invariant under equivalence

⁴The Univalent Foundations Program. Homotopy type theory: Univalent foundations of mathematics

Category Theory in Univalent Foundations

- In univalent foundations, there are two notions of category: univalent categories and strict categories
- ▶ Strict categories: categories indentified up to isomorphism
- ► Univalent categories⁵: categories identified up to adjoint equivalence

⁵Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk completion

Category Theory in Univalent Foundations

- In univalent foundations, there are two notions of category: univalent categories and strict categories
- ▶ Strict categories: categories indentified up to isomorphism
- ► Univalent categories⁵: categories identified up to adjoint equivalence
- Precisely, a univalent category is a category in which identity of objects corresponds to isomorphism

⁵Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk completion

Category Theory in Univalent Foundations

- In univalent foundations, there are two notions of category: univalent categories and strict categories
- ▶ Strict categories: categories indentified up to isomorphism
- ► **Univalent categories**⁵: categories identified up to adjoint equivalence
- Precisely, a univalent category is a category in which identity of objects corresponds to isomorphism

We can thus consider **internal language theorems** for both notions of category, and we consider **internal language theorems for univalent categories**

⁵Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk completion

Main Theorem

Theorem

We have a biequivalence betweeen the bicategories

- ▶ DFLCompCat: univalent democratic comprehension categories that support unit types, equalizer types, binary product types, and strong ∑-types
- FinLim: univalent finitely complete categories

⁶https://github.com/UniMath/UniMath/tree/master/UniMath/
Bicategories/ComprehensionCat

Main Theorem

Theorem

We have a biequivalence betweeen the bicategories

- ▶ DFLCompCat: univalent democratic comprehension categories that support unit types, equalizer types, binary product types, and strong ∑-types
- FinLim: univalent finitely complete categories

We extend this biequivalence to

- ► ∏-types and LCCCs
- ▶ pretoposes, ∏-pretoposes
- elementary toposes

⁶https://github.com/UniMath/UniMath/tree/master/UniMath/
Bicategories/ComprehensionCat

Main Theorem

Theorem

We have a biequivalence betweeen the bicategories

- ▶ DFLCompCat: univalent democratic comprehension categories that support unit types, equalizer types, binary product types, and strong ∑-types
- FinLim: univalent finitely complete categories

We extend this biequivalence to

- ► ∏-types and LCCCs
- ▶ pretoposes, ∏-pretoposes
- elementary toposes

The proof is formalized using UniMath⁶

⁶https://github.com/UniMath/UniMath/tree/master/UniMath/
Bicategories/ComprehensionCat

This Talk

There are many interesting aspects to the proof

- ► Necessity of non-discrete categorical models: we use comprehension categories instead of CwFs
- ► Transporting properties/structure along equivalences is free if we assume univalence
- Displayed bicategories/biequivalences⁷: modularly construct of bicategories and biequivalences
- ► Local properties⁸ generalize a wide variety of type formers

⁷Ahrens, Benedikt, Dan Frumin, Marco Maggesi, Niccoló Veltri, and Niels van der Weide. Bicategories in univalent foundations

⁸Maietti, Maria Emilia. Modular correspondence between dependent type theories and categories including pretopoi and topoi

This Talk

There are many interesting aspects to the proof

- ► Necessity of non-discrete categorical models: we use comprehension categories instead of CwFs
- Transporting properties/structure along equivalences is free if we assume univalence
- Displayed bicategories/biequivalences⁷: modularly construct of bicategories and biequivalences
- ► Local properties⁸ generalize a wide variety of type formers

⁷Ahrens, Benedikt, Dan Frumin, Marco Maggesi, Niccoló Veltri, and Niels van der Weide. Bicategories in univalent foundations

⁸Maietti, Maria Emilia. Modular correspondence between dependent type theories and categories including pretopoi and topoi

There are various notions of categorical models for type theory. There are **discrete** models that are based on **presheaves**.

- Categories with families⁹
- ▶ Natural models¹⁰

⁹Dybjer, Peter. Internal type theory

¹⁰Awodey, Steve. Natural models of homotopy type theory

¹¹Jacobs, Bart. Comprehension Categories and the Semantics of Type Dependency

¹²Coraglia, Greta and Ivan Di Liberti. Context, Judgement, Deduction

¹³Gratzer, Daniel, Håkon Gylterud, Anders Mörtberg, Elisabeth Stenholm.

There are various notions of categorical models for type theory. There are **discrete** models that are based on **presheaves**.

- Categories with families⁹
- ► Natural models¹⁰

There are nondiscrete models that are based on fibrations.

- ► Comprehension categories¹¹
- ► Natural models¹²

⁹Dybjer, Peter. Internal type theory

¹⁰Awodey, Steve. Natural models of homotopy type theory

¹¹Jacobs, Bart. Comprehension Categories and the Semantics of Type Dependency

¹²Coraglia, Greta and Ivan Di Liberti. Context, Judgement, Deduction

¹³Gratzer, Daniel, Håkon Gylterud, Anders Mörtberg, Elisabeth Stenholm.

There are various notions of categorical models for type theory.

There are **discrete** models that are based on **presheaves**.

- Categories with families⁹
- Natural models¹⁰

There are nondiscrete models that are based on fibrations.

- ► Comprehension categories¹¹
- ► Natural models¹²

We use **non-discrete models**.

⁹Dybjer, Peter. Internal type theory

¹⁰Awodey, Steve. Natural models of homotopy type theory

¹¹Jacobs, Bart. Comprehension Categories and the Semantics of Type Dependency

¹²Coraglia, Greta and Ivan Di Liberti. Context, Judgement, Deduction

¹³Gratzer, Daniel, Håkon Gylterud, Anders Mörtberg, Elisabeth Stenholm.

There are various notions of categorical models for type theory.

There are discrete models that are based on presheaves.

- Categories with families⁹
- Natural models¹⁰

There are nondiscrete models that are based on fibrations.

- ► Comprehension categories¹¹
- Natural models¹²

We use non-discrete models.

Note: discrete models are suitable for strict categories¹³

⁹Dybjer, Peter. Internal type theory

¹⁰Awodey, Steve. Natural models of homotopy type theory

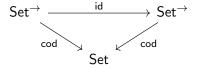
¹¹Jacobs, Bart. Comprehension Categories and the Semantics of Type Dependency

¹²Coraglia, Greta and Ivan Di Liberti. Context, Judgement, Deduction

¹³Gratzer, Daniel, Håkon Gylterud, Anders Mörtberg, Elisabeth Stenholm.

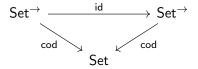
Reject Discreteness! But why?

Recall: a set is a type whose identity type is trivial (i.e., X is a set if for all x, y : X and p, q : x = y, we have p = q) The set model can be described as follows



Reject Discreteness! But why?

Recall: a set is a type whose identity type is trivial (i.e., X is a set if for all x, y : X and p, q : x = y, we have p = q)
The set model can be described as follows



However

- Types in the empty context are the same as sets
- Due to the univalence axiom, the type of sets is not a set itself
- ► This is because identity of sets corresponds to isomorphism, and there can be nontrivial automorphisms on sets

So: comprehension categories are more suitable than CwFs

Univalence simplifies proofs of statements like

for all x and y and for all equivalences $e: x \cong y$, we have P(e)

By equivalence induction, we can assume that e is the identity

Univalence simplifies proofs of statements like

for all x and y and for all equivalences $e: x \cong y$, we have P(e)

By equivalence induction, we can assume that e is the identity We use this to:

- transport properties/structure along equivalences
- characterize adjoint equivalences

In the construction of the desired biequivalence:

- we regularly transport properties/structure along equivalences
- characterizations of adjoint equivalences are useful

In the construction of the desired biequivalence:

- we regularly transport properties/structure along equivalences
- characterizations of adjoint equivalences are useful

Instances of transport along adjoint equivalences:

- local properties
- finite limits
- locally Cartesian closedness

In the construction of the desired biequivalence:

- we regularly transport properties/structure along equivalences
- characterizations of adjoint equivalences are useful

Instances of transport along adjoint equivalences:

- local properties
- finite limits
- ► locally Cartesian closedness

Characterizations of adjoint equivalences:

- to prove that pointwise pseudonatural adjoint equivalences are adjoint equivalences
- to characterize adjoint equivalences of comprehension categories

Characterizing Adjoint Equivalences

Often we want to show that some pseudofunctor reflects adjoint equivalences

e:
$$X \longrightarrow y$$
 $Pe: Px \simeq Py$
 R_z

Example: underlying pseudofunctor from comprehension categories to fibrations

Characterizing Adjoint Equivalences

If we use displayed bicategories, we can use equivalence induction

$$\overline{e}: \overline{X} \longrightarrow \overline{y}$$

By induction on e: we only have to consider morphisms over identities

Conclusion

- Univalent foundations offers an interesting perspective on the categorical semantics of type theory
- We discussed a version of Clairambault's and Dybjer's theorem for univalent categories, and we extended it to various classes uf toposes
- ► There are many interesting aspects to this proof, and we discussed the usage of non-discrete models and transporting along equivalences
- ► Preprint: https://arxiv.org/abs/2411.06636v3
- ► Longer version of this talk: https://www.youtube.com/watch?v=Yk09KrBNUt4