Displayed Monoidal Categories for the Semantics of Linear Logic

Benedikt Ahrens

Ralph Matthes Niels van der Weide Kobe Wullaert

January 30, 2024

Linear Logic

Categorical Semantics of Linear Logic

Displayed Categories

Displayed Monoidal Categories

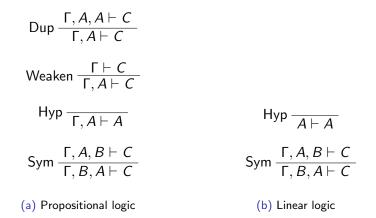
What is Linear Logic?

- Linear logic is "the logic of resources"
- Key feature of linear logic: assumptions are used exactly once
- Used for many applications (e.g., quantum physics, separation logic, domain theory)

- To describe linear logic, we give connectives and derivation rules
- Among the derivation rules, there are structural rules, introduction rules, and elimination rules
- Note: often sequent calculus is used for linear logic
- This talk: natural deduction (following a note by Pfenning¹ and the linear λ-calculus by Benton and Wadler)

¹https://www.cs.cmu.edu/~fp/courses/15816-f01/handouts/lnd.pdf

Structural Rules



Note the difference between the Hyp rules!

Connectives

We consider a fragment of **intuitionistic linear logic**. It has the following connectives:

- ▶ linear conjunction: ⊗
- ▶ linear implication: —
- bang modality: ! (you can duplicate assumptions under a !)

People also consider other connectives for linear logic.

- why not modality: ?
- linear negation
- quantifiers

But we shall ignore them in this talk

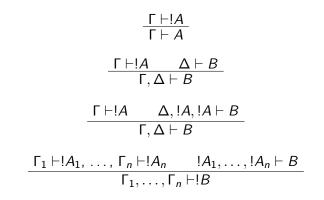
Derivation Rules for \otimes

$$\wedge I \frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \wedge B} \\ \otimes E1 \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A} \qquad \qquad \otimes I \frac{\Gamma \vdash A \qquad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \\ \otimes E2 \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B} \qquad \qquad \otimes E \frac{\Gamma \vdash A \otimes B \qquad \Delta, A, B \vdash C}{\Gamma, \Delta \vdash C} \\ (a) Conjunction \qquad (b) Linear conjunction$$

Derivation Rules for $-\!\!\circ$

$$\rightarrow I \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \qquad \qquad - \circ I \frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B}$$
$$\rightarrow E \frac{\Gamma \vdash A \rightarrow B}{\Gamma \vdash B} \qquad - \circ E \frac{\Gamma \vdash A \multimap B}{\Gamma, \Delta \vdash B}$$
(a) Implication (b) Linear implication

Derivation Rules for !



We can copy and discard assumptions under the bang modality

Linear Logic

Categorical Semantics of Linear Logic

Displayed Categories

Displayed Monoidal Categories

The Semantics of Linear Logic

- To relate the syntax to actual applications, we give denotational semantics
- For example, to relate linear logic to quantum mechanics, we interpret formulas as vector spaces
- Our tool for denotational semantics: category theory

Category Theory and Semantics

Curry-Howard-Lambek correspondence

Logic	Type theory	Category Theory
Formula	Туре	Object
Proof	Term	Morphism
Connective	Type Constructor	Categorical structure

Category Theory and Semantics

Curry-Howard-Lambek correspondence

Logic	Type theory	Category Theory
Formula	Туре	Object
Proof	Term	Morphism
Connective	Type Constructor	Categorical structure

Note: categorical structure is described via **universal properties** whereas connective/type constructors are described via **introduction and elimination rules**.

Categorical Semantics for Linear Logic

We discussed 3 connectives in our logic:

- ▶ linear conjunction: ⊗
- ▶ linear implication: —
- bang modality: ! (you can duplicate assumptions under a !)

Categorical Semantics for Linear Logic

We discussed 3 connectives in our logic:

- ▶ linear conjunction: ⊗
- ▶ linear implication: —

bang modality: ! (you can duplicate assumptions under a !) Let us start by looking at the semantics of linear conjunction and implication.

Monoidal Categories, what are they?

Basically: Monoidal category = Monoid + category A monoidal category is a category with a multiplication \otimes .

- given objects x, y, we have an object $x \otimes y$
- ▶ given morphisms $f : x \to x'$ and $g : y \to y'$, we have a morphism $f \otimes g : x \otimes y \to x' \otimes y'$

We require \otimes to be associative and unital in a weak sense.

Monoidal Categories and Linear Logic

$$\frac{x: \mathcal{C} \quad y: \mathcal{C}}{x \otimes y: \mathcal{C}} \qquad \qquad \underbrace{A: \operatorname{Prop} \quad B: \operatorname{Prop}}_{A \otimes B: \operatorname{Prop}}$$

$$\frac{f: x \to x' \quad g: y \to y'}{f \otimes g: x \otimes y \to x' \otimes y'} \qquad \qquad \underbrace{\Gamma \vdash A \quad \Delta \vdash B}_{\Gamma, \Delta \vdash A \otimes B}$$
(a) Monoidal Categories (b) Linear Logic

Monoidal Categories and Linear Logic

$$\frac{x: \mathcal{C} \quad y: \mathcal{C}}{x \otimes y: \mathcal{C}} \qquad \qquad \underbrace{A: \operatorname{Prop} \quad B: \operatorname{Prop}}_{A \otimes B: \operatorname{Prop}}$$

$$\frac{f: x \to x' \quad g: y \to y'}{f \otimes g: x \otimes y \to x' \otimes y'} \qquad \qquad \underbrace{\Gamma \vdash A \quad \Delta \vdash B}_{\Gamma, \Delta \vdash A \otimes B}$$
(a) Monoidal Categories (b) Linear Logic

For the linear implication, one can use **symmetric monoidal closed categories**.

But what about ! (the bang modality)?

- Giving semantics to the bang modality is more challenging
- There are various options: Lafont categories, Seely-categories, linear categories, linear non-linear models
- This talk: linear non-linear models

Linear-non-linear models: Intuition

- We have a linear world where we cannot duplicate assumptions
- We have a cartesian world where we can duplicate assumptions
- The ! modality jumps from the linear world to the cartesian world and back

Linear-non-linear models: Precisely

A linear-non-linear model is a symmetric monoidal adjunction

where \mathbb{L} is a symmetric monoidal category (\otimes and $-\infty$) and \mathbb{C} is a cartesian category (we can copy and delete hypotheses). We interpret ! as $\mathbb{L} \to \mathbb{C} \to \mathbb{L}$.

Example of a linear-non-linear model

Lifting of complete partial orders gives a model²

$$\omega \operatorname{cpo}_{\perp !} \xrightarrow[\operatorname{lift}]{U} \omega \operatorname{cpo}$$

Here:

- ω cpo: objects are ω cpos, morphisms are continuous maps
- ω cpo₁: objects are pointed ω cpos, morphisms are continuous strict maps
- lift: attaches a minimum element to a ω cpo

²A Mixed Linear and Non-Linear Logic, Benton

Another axample of a linear-non-linear model

A model from abelian groups³

Set
$$\xrightarrow[]{F}$$
 Ab

Here:

- ω Ab: objects are abelian groups, morphisms are homomorphisms
- Set: objects are sets, morphisms are functions
- ► F: free abelian group functor

³A Mixed Linear and Non-Linear Logic, Benton

HOWEVER.....

- There are several methods to give models of linear logic
- Those make use complicated monoidal categories
- The relation model by Lafont uses comonoids
- Other models uses comonads and Eilenberg-Moore categories

Challenge: how do we formalize such monoidal categories in a modular way?

Our paper

- We introduce displayed monoidal categories
- We use them to construct complicated monoidal categories in a modular way
- Nice application of dependent types to category theory
- Formalized using Coq and the UniMath library

Linear Logic

Categorical Semantics of Linear Logic

Displayed Categories

Displayed Monoidal Categories

Example of Linear-non-linear models

The relation model of linear logic

$$\mathsf{Comonoid}(\mathsf{Rel}) \xrightarrow[]{U}{} \mathsf{Rel}$$

Here:

- Rel: objects are sets, morphisms are relations
- Comonoid(Rel): objects are comonoids
- The functor C is given by finite multisets (i.e., free comonoid)

Complicated Monoidal Categories: Comonoids

A comonoid (x, ε, δ) in a monoidal category $\mathcal C$ consists of

- ▶ an object *x* : *C*
- ▶ a comultiplication $\varepsilon : x \to x \otimes x$
- ▶ a counit $\delta : x \rightarrow \mathbf{1}$
- Laws: coassociativity and counitality.

Complicated Monoidal Categories: Comonoids

A comonoid (x, ε, δ) in a monoidal category $\mathcal C$ consists of

- ▶ an object *x* : *C*
- ▶ a comultiplication $\varepsilon : x \to x \otimes x$
- ▶ a counit $\delta : x \rightarrow \mathbf{1}$
- Laws: coassociativity and counitality.

For the tensor, we need to consider comonoids as a whole This does not allow for code reuse (i.e., complicated structures of which comonoids form substructure) We can use the following strategy to define the notion of groups.

- 1. Given a set X, define the type of **group structures** over X
- 2. A group is a set together with a group structure
- This means we define the notion of groups in 2 steps.

We can use the following strategy to define the notion of groups.

- 1. Given a set X, define the type of **group structures** over X
- 2. A group is a set together with a group structure

This means we define the notion of groups in 2 steps.

Displayed categories formalize this idea for categories

Displayed Categories

A displayed category over a category $\ensuremath{\mathcal{C}}$ consists of

- ► For every object *x* : *C*, a type of structures over *x*
- For all morphisms f : x → y and structures S_x and S_y for x and y respectively, a type of structure-preserving maps

Displayed Categories: Example

The displayed category of groups over sets:

- For every set X, a type of group structures for X
- For all functions $f : X \to Y$ and group structures G_X and G_Y , a type expressing that f is a homomorphism

Building Complicated Structures from Simpler Ones

Displayed categories give **modularity**, because we can **untangle** and **stratify** structures.

Basically: build up complicated structures from simpler structures

Building Complicated Structures from Simpler Ones

Displayed categories give **modularity**, because we can **untangle** and **stratify** structures.

Basically: build up complicated structures from simpler structures For example:

Product of displayed categories (combines structures)

$$\frac{f: X \to \mathsf{Type}}{h(x) = f(x) \times g(x)}$$

Adding a destructor (i.e. coalgebra structure)

$$f(x) = x \to x^n$$

We can reason about the these parts **independently**, and we can reuse the results in larger proofs.

Linear Logic

Categorical Semantics of Linear Logic

Displayed Categories

Displayed Monoidal Categories

Displayed Monoidal Categories, but what are they?

Displayed monoidal categories

=

Displayed categories + monoidal categories

Displayed Monoidal Categories, but what are they?

Displayed monoidal categories

=

Displayed categories + monoidal categories Note: there also needs to be a suitable interaction between the two concepts Displayed Monoidal Categories, but what are they?

Let S be a displayed category over C.

$$\frac{x:\mathcal{C} \quad y:\mathcal{C}}{x\otimes y:\mathcal{C}} \qquad \qquad \frac{x:\mathcal{C} \quad \overline{x}:S_x \quad y:\mathcal{C} \quad \overline{y}:S_y}{\overline{x}\otimes\overline{y}:S_{x\otimes y}}$$

(a) Monoidal Categories

(b) Displayed Monoidal Categories

Comonoids using displayed monoidal categories

Main idea:

- We define a displayed monoidal category that adds a destructor x → F(x) for a lax monoidal functor F
- \blacktriangleright This way we acquire the counit ε and the comultiplication δ
- We define the full subcategory via a displayed monoidal category, and that gives us the laws
- So: we build up the category of comonoids via smaller pieces and we reason about those smaller parts

Conclusion

- Main take-away: displayed monoidal categories are a technique to modularly build monoidal categories
- In the paper, we define and study displayed monoidal categories
- We apply it to a case study arising from linear logic
- They make the formalization of complicated monoidal categories more convenient and nicer
- Key examples: category of comonoids, Eilenberg-Moore category

Check our paper:

https://dl.acm.org/doi/abs/10.1145/3636501.3636956.