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What is Linear Logic?

▶ Linear logic is “the logic of resources”

▶ Key feature of linear logic: assumptions are used exactly
once

▶ Used for many applications (e.g., quantum physics, separation
logic, domain theory)
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Logic

▶ To describe linear logic, we give connectives and derivation
rules

▶ Among the derivation rules, there are structural rules,
introduction rules, and elimination rules

▶ Note: often sequent calculus is used for linear logic

▶ This talk: natural deduction (following a note by Pfenning1

and the linear λ-calculus by Benton and Wadler)

1https://www.cs.cmu.edu/~fp/courses/15816-f01/handouts/lnd.pdf
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Structural Rules

Γ,A,A ⊢ C
Dup

Γ,A ⊢ C

Γ ⊢ C
Weaken

Γ,A ⊢ C

Hyp
Γ,A ⊢ A

Γ,A,B ⊢ C
Sym

Γ,B,A ⊢ C

(a) Propositional logic

Hyp
A ⊢ A

Γ,A,B ⊢ C
Sym

Γ,B,A ⊢ C

(b) Linear logic

Note the difference between the Hyp rules!
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Connectives

We consider a fragment of intuitionistic linear logic.
It has the following connectives:

▶ linear conjunction: ⊗
▶ linear implication: ⊸

▶ bang modality: ! (you can duplicate assumptions under a !)

People also consider other connectives for linear logic.

▶ why not modality: ?

▶ linear negation

▶ quantifiers

But we shall ignore them in this talk
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Derivation Rules for ⊗

Γ ⊢ A Γ ⊢ B∧I
Γ ⊢ A ∧ B

Γ ⊢ A ∧ B⊗E1
Γ ⊢ A

Γ ⊢ A ∧ B⊗E2
Γ ⊢ B

(a) Conjunction

Γ ⊢ A ∆ ⊢ B⊗I
Γ,∆ ⊢ A⊗ B

Γ ⊢ A⊗ B ∆,A,B ⊢ C
⊗E

Γ,∆ ⊢ C

(b) Linear conjunction
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Derivation Rules for ⊸

Γ,A ⊢ B
→I

Γ ⊢ A → B

Γ ⊢ A → B Γ ⊢ A→E
Γ ⊢ B

(a) Implication

Γ,A ⊢ B
⊸I

Γ ⊢ A ⊸ B

Γ ⊢ A ⊸ B ∆ ⊢ A⊸E
Γ,∆ ⊢ B

(b) Linear implication
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Derivation Rules for !

Γ ⊢!A
Γ ⊢ A

Γ ⊢!A ∆ ⊢ B
Γ,∆ ⊢ B

Γ ⊢!A ∆, !A, !A ⊢ B

Γ,∆ ⊢ B

Γ1 ⊢!A1, . . . , Γn ⊢!An !A1, . . . , !An ⊢ B

Γ1, . . . , Γn ⊢!B

We can copy and discard assumptions under the bang modality
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The Semantics of Linear Logic

▶ To relate the syntax to actual applications, we give
denotational semantics

▶ For example, to relate linear logic to quantum mechanics, we
interpret formulas as vector spaces

▶ Our tool for denotational semantics: category theory
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Category Theory and Semantics

Curry-Howard-Lambek correspondence

Logic Type theory Category Theory

Formula Type Object
Proof Term Morphism
Connective Type Constructor Categorical structure

Note: categorical structure is described via universal properties
whereas connective/type constructors are described via
introduction and elimination rules.
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Categorical Semantics for Linear Logic

We discussed 3 connectives in our logic:

▶ linear conjunction: ⊗
▶ linear implication: ⊸

▶ bang modality: ! (you can duplicate assumptions under a !)

Let us start by looking at the semantics of linear conjunction and
implication.
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Monoidal Categories, what are they?

Basically: Monoidal category = Monoid + category
A monoidal category is a category with a multiplication ⊗.

▶ given objects x , y , we have an object x ⊗ y

▶ given morphisms f : x → x ′ and g : y → y ′, we have a
morphism f ⊗ g : x ⊗ y → x ′ ⊗ y ′

We require ⊗ to be associative and unital in a weak sense.
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Monoidal Categories and Linear Logic

x : C y : C
x ⊗ y : C

f : x → x ′ g : y → y ′

f ⊗ g : x ⊗ y → x ′ ⊗ y ′

(a) Monoidal Categories

A : Prop B : Prop

A⊗ B : Prop

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A⊗ B

(b) Linear Logic

For the linear implication, one can use symmetric monoidal
closed categories.
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But what about ! (the bang modality)?

▶ Giving semantics to the bang modality is more challenging

▶ There are various options: Lafont categories, Seely-categories,
linear categories, linear non-linear models

▶ This talk: linear non-linear models
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Linear-non-linear models: Intuition

▶ We have a linear world where we cannot duplicate assumptions

▶ We have a cartesian world where we can duplicate
assumptions

▶ The ! modality jumps from the linear world to the cartesian
world and back
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Linear-non-linear models: Precisely

A linear-non-linear model is a symmetric monoidal adjunction

C L

where L is a symmetric monoidal category (⊗ and ⊸) and C is a
cartesian category (we can copy and delete hypotheses).
We interpret ! as L → C → L.
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Example of a linear-non-linear model

Lifting of complete partial orders gives a model2

ω cpo⊥! ω cpo
lift

U

Here:

▶ ω cpo: objects are ω cpos, morphisms are continuous maps

▶ ω cpo⊥!: objects are pointed ω cpos, morphisms are
continuous strict maps

▶ lift: attaches a minimum element to a ω cpo

2A Mixed Linear and Non-Linear Logic, Benton
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Another axample of a linear-non-linear model

A model from abelian groups3

Set Ab
U

F

Here:

▶ ω Ab: objects are abelian groups, morphisms are
homomorphisms

▶ Set: objects are sets, morphisms are functions

▶ F : free abelian group functor

3A Mixed Linear and Non-Linear Logic, Benton
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HOWEVER.........

▶ There are several methods to give models of linear logic

▶ Those make use complicated monoidal categories

▶ The relation model by Lafont uses comonoids

▶ Other models uses comonads and Eilenberg-Moore
categories

Challenge: how do we formalize such monoidal categories in a
modular way?
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Our paper

▶ We introduce displayed monoidal categories

▶ We use them to construct complicated monoidal categories in
a modular way

▶ Nice application of dependent types to category theory

▶ Formalized using Coq and the UniMath library
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Example of Linear-non-linear models

The relation model of linear logic

Comonoid(Rel) Rel
C

U

Here:

▶ Rel: objects are sets, morphisms are relations

▶ Comonoid(Rel): objects are comonoids

▶ The functor C is given by finite multisets (i.e., free
comonoid)
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Complicated Monoidal Categories: Comonoids

A comonoid (x , ε, δ) in a monoidal category C consists of

▶ an object x : C
▶ a comultiplication ε : x → x ⊗ x

▶ a counit δ : x → 1

▶ Laws: coassociativity and counitality.

For the tensor, we need to consider comonoids as a whole
This does not allow for code reuse (i.e., complicated structures of
which comonoids form substructure)
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Interlude: Group Structures

We can use the following strategy to define the notion of groups.

1. Given a set X , define the type of group structures over X

2. A group is a set together with a group structure

This means we define the notion of groups in 2 steps.

Displayed categories formalize this idea for categories

26/34



Interlude: Group Structures

We can use the following strategy to define the notion of groups.

1. Given a set X , define the type of group structures over X

2. A group is a set together with a group structure

This means we define the notion of groups in 2 steps.
Displayed categories formalize this idea for categories

26/34



Displayed Categories

A displayed category over a category C consists of

▶ For every object x : C, a type of structures over x

▶ For all morphisms f : x → y and structures Sx and Sy for x
and y respectively, a type of structure-preserving maps
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Displayed Categories: Example

The displayed category of groups over sets:

▶ For every set X , a type of group structures for X

▶ For all functions f : X → Y and group structures GX and GY ,
a type expressing that f is a homomorphism
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Building Complicated Structures from Simpler Ones

Displayed categories give modularity, because we can untangle
and stratify structures.
Basically: build up complicated structures from simpler structures

For example:

▶ Product of displayed categories (combines structures)

f : X → Type g : X → Type

h(x) = f (x)× g(x)

▶ Adding a destructor (i.e. coalgebra structure)

f (x) = x → xn

We can reason about the these parts independently, and we can
reuse the results in larger proofs.
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Displayed Monoidal Categories, but what are they?

Displayed monoidal categories
=
Displayed categories + monoidal categories

Note: there also needs to be a suitable interaction between the two
concepts
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Displayed Monoidal Categories, but what are they?

Let S be a displayed category over C.

x : C y : C
x ⊗ y : C

(a) Monoidal Categories

x : C x : Sx y : C y : Sy
x ⊗ y : Sx⊗y

(b) Displayed Monoidal Categories
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Comonoids using displayed monoidal categories

Main idea:

▶ We define a displayed monoidal category that adds a
destructor x → F (x) for a lax monoidal functor F

▶ This way we acquire the counit ε and the comultiplication δ

▶ We define the full subcategory via a displayed monoidal
category, and that gives us the laws

So: we build up the category of comonoids via smaller pieces and
we reason about those smaller parts
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Conclusion

▶ Main take-away: displayed monoidal categories are a
technique to modularly build monoidal categories

▶ In the paper, we define and study displayed monoidal
categories

▶ We apply it to a case study arising from linear logic

▶ They make the formalization of complicated monoidal
categories more convenient and nicer

▶ Key examples: category of comonoids, Eilenberg-Moore
category

Check our paper:
https://dl.acm.org/doi/abs/10.1145/3636501.3636956.
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