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Abstract
The paper “Sorting with Bialgebras and Distributive Laws”
by Hinze et al. uses the framework of bialgebraic semantics
to define sorting algorithms. From distributive laws between
functors they construct pairs of sorting algorithms using
both folds and unfolds. Pairs of sorting algorithms arising
this way include insertion/selection sort and quick/tree sort.

We extend this work to define intrinsically correct variants
in cubical Agda. Our key idea is to index our data types by
multisets, which concisely captures that a sorting algorithm
terminates with an ordered permutation of its input list.
By lifting bialgebraic semantics to the indexed setting, we
obtain the correctness of sorting algorithms purely from the
distributive law.

CCS Concepts: • Theory of computation → Type
theory; Logic and verification; Categorical semantics;
Denotational semantics; Constructive mathematics.

Keywords: sorting, cubical Agda, bialgebras, distributive
laws, intrinsic correctness
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1 Introduction
Sorting is one of the most widely studied algorithmic
problems in computer science. As a consequence, not only
a wide variety of sorting algorithms have been developed,
but there also have been numerous efforts in verifying these
algorithms. These verification efforts range from early non-
trivial examples of verified functional algorithms (e.g., [3, 31])
to full verification of industrial code [12].

Intrinsic and Extrinsic Verification. Themost common
way of verifying sorting and other algorithms is by what
we refer to as extrinsic verification. In this approach, the
programmer starts by implementing the algorithm in their
language of choice. Afterwards, they reason about the
algorithm and prove its correctness. The (partial) correctness
specification is thus a separate entity from the algorithm.
In the case of sorting, one implements a sorting algorithm,
and designs a predicate that a list is ordered, a predicate
that one list is a permutation of another, and then proves for
the algorithm at hand that the output list is ordered and a
permutation of the input.
An alternative approach is to directly encode the

properties of orderedness and element-preservation in the
definitions of the type of the program and in the types
of its underlying data structures. Here the programmer
would use more expressive data structures, such as ordered
lists, to express the correctness of their program in the
type. This approach is referred to as intrinsic verification.
Intrinsic verification may avoid code duplication that occurs
in extrinsic verification, because the predicates one defines
mirror the recursive structure of the data they predicate over,
and the proofs mirror the recursive structure of the programs.
However, encoding the specification in the type can be a
challenge for intrinsic verification. For sorting algorithms,
the first part is to encode orderedness of output lists, which
is addressed in [28].
We encode both orderedness and element-preservation

intrinsically, expressing the specification of sorting entirely
in the type of the programs. To express element-preservation,
our key idea is to used indexed types. More specifically, types
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are indexed by multisets, capturing intuitively the elements
that occur in lists. By using finite multisets, this approach not
only allows us to naturally encode orderedness and element-
preservation, but also to prove termination. Our development
is in cubical Agda, and we represent finite multisets as a
quotient inductive type [42] following [9].

Sorting via Bialgebras. To further minimize structural
proof-program duplication, we define our sorting algorithms
in a sophisticated way that allows us to obtain two
intrinsically verified algorithms for the price of one
shared non-recursive “business logic”. More specifically,
we construct intrinsically verified versions of sorting
algorithms that are defined using the categorical framework
of bialgebraic semantics, as proposed in [17]. In this
framework, based on the seminal work of Turi and Plotkin
on the use of bialgebras in operational semantics [40], it is
shown that various sorting algorithms arise from distributive
laws between functors. Distributive laws are extended to full
sorting algorithms in two ways, using both folds (induction)
and unfolds (coinduction).
For instance, both insertion sort and selection sort arise

in this way from the “swap” distributive law that takes a
pair of elements and puts them in the right order. In the
current paper, we show that intrinsic verification of these
algorithms reduces to the verification of this distributive law,
thereby focusing only on the key business logic behind the
two algorithms.We then show how to extend this to themore
complex examples of quicksort, treesort and heapsort, which
also arise from distributive laws (which are, accordingly,
a bit more complex). Altogether, we thus show how to
define intrinsic correctness of sorting algorithms in cubical
Agda, and prove correctness of various sorting algorithms
as generated from a distributive law in the framework of
bialgebraic semantics.

Contributions. We summarise the main contributions of
this paper as follows.

• We formulate intrinsic correctness of sorting
algorithms in cubical Agda, by indexing datatypes of
lists by a quotient inductive type of finite multisets.

• We show that the finite multiset index acts as a
termination measure which enables us to define maps
into an inductive datatype via iteration.

• We define intrinsically correct versions of insertion-,
selection-, heap-, tree- and quicksort by verifying
only their non-recursive business logic in the form
of distributive laws, à la [17].

• We revisit finite multiset indexing at themore semantic
level of Set-based coalgebras, showing how ordered
(finite) lists arise as a final coalgebra in this setting.

This paper has an accompanying Agda formalization [2],
of which we include excerpts in the text.

2 Overview
In this section we describe the main problem addressed in
this paper: how to formulate and prove intrinsic correctness
of sorting algorithms generated from a distributive law.
We start by recalling the analysis by Hinze et al. [17], set
in Haskell, of how a distributive law forms the shared
business logic of insertion and selection sort (Sections 2.1
to 2.3). We then move on to the definitions and proofs
necessary to define an intrinsically correct version of
this algorithm (Section 2.4), thereby sketching our overall
approach. Throughout this section, we fix a type A of
elements to be sorted, with a total ordering ≤ on it.
We analyse the recursion behaviour of insertion and

selection sort through the lens of algebra and coalgebra [18].
To do this, we briefly recall how these category-theoretical
notions apply to structured (co)recursion.

Recursive datatypes have a shape given by a non-recursive
base functor [6]. For example, the type of lists, List , is the
recursive datatype for the base functor L:

data List = [] ∣ 𝐴 ∶ List
data L r = ⋆ ∣ (𝐴 , r)
In our introductory setting of the lazy functional

programming language Haskell, recursive datatypes are the
carriers of both the initial algebra and final coalgebra for
this functor [37]. We call them inductive when referring
to them as carriers of the initial algebra, and coinductive
when referring to them as carriers of the final coalgebra.
To make this distinction explicit, we introduce the type
synonym μL for List as an inductive datatype, and νO for
List as coinductive. We also introduce a type synonym for
the base functor L when we use it in the type of coalgebras.

type μL = List
type νO = List
type O r = L r

One can define maps out of inductive datatypes as folds
of algebras. Intuitively, folds are bottom-up traversals of a
term that replace its constructors with functions that return
values of some type x . The business logic for replacing the
constructors of a datatype with base functor F is provided
as a map of type F x → x . Such a map is called an F -algebra
with carrier x . The inductive datatype μF is the carrier of the
initial F -algebra in ∶∶ F μF → μF . This algebra replaces the
constructors of μF with themselves. The type of the fold for
L is:

fold ∶∶ (L x → x) → (μL → x)
One can define maps into into coinductive datatypes as

unfolds of coalgebras. Intuitively, coalgebras are functions
that, given a seed value, produce one layer of a coinductive
datatype, with new seeds at the recursive positions.
Successively applying such a coalgebra to the new seeds
until only leaves of the datatype are produced yields possibly

35



Intrinsically Correct Sorting in Cubical Agda CPP ’25, January 20–21, 2025, Denver, CO, USA

infinite trees of the shape given by the base functor. An
F -coalgebra with carrier x is a map of type x → F x . The
coinductive datatype νF is the carrier of the final F -coalgebra
out ∶∶ νF → F νF . This coalgebra exposes one layer of
recursion of the codatatype. The type of the unfold for O is:

unfold ∶∶ (x → O x) → (x → νO)

The type of a sorting algorithm is a map from a list to a
list. To emphasise that we treat the input inductively and the
output coinductively, we write its type as

sort ∶∶ 𝜇𝐿 → 𝜈𝑂 .

Note that maps of this type can be constructed out of the
domain using fold, or into the codomain using unfold. Both
methods are used in the bialgebraic framework, yielding two
sorting algorithms from a single piece of business logic (a
distributive law). We now proceed to analyse the recursion
behavior of insertion and selection sort using folds and
unfolds.

2.1 Insertion Sort
Insertion sort is a list traversal that successively inserts
elements at the correct place into the output list, starting
with an empty list. As such we can express it as a fold of the
algebra insert :

insert ∶∶ L νO → νO
insert ⋆ = []
insert (a , []) = a ∶ []
insert (a , b ∶ r ′)

∣ a ≤ b = a ∶ b ∶ r ′

∣ otherwise = b ∶ insert (a , r ′)
insertSort = fold insert

In turn, the algebra insert can be defined recursively using
an O-coalgebra, as a variant of an unfold . This coalgebra has
as seed type a pair of an element to be inserted and a list
it is to be inserted into. At each step, it outputs an element
and continues with a new seed, returning early when the
element to be inserted is a lower bound to the rest of the list.
This type of recursion is a modified version of an unfold,

known as an apomorphism [43]. The ability to return early
is captured by the addition of νO + ⋅ in the carrier of the
coalgebra.

apo ∶∶ ( x → O (νO + x )) → x → νO
ins ∶∶ (L νO → O (νO + L νO))
ins ⋆ = ⋆
ins (a , []) = (a , Left [])
ins (a , b ∶ r ′)

∣ a ≤ b = (a , Left (b ∶ r ′))
∣ otherwise = (b , Right (a , r ′))

insert = apo ins

We have now expressed the recursion behaviour of
insertion sort in terms of folds and unfolds. The outer layer is
expressible as a fold, the inner as early-return-enabled unfold
(an apomorphism), supplied with a non-recursive coalgebra:

insertSort = fold (apo ins)

2.2 Selection Sort
We continue with the analysis of the recursion behaviour of
selection sort to reduce its business logic to a non-recursive
step, similar to the case of insertion sort. We then lay out how
those two non-recursive business logics can be synthesised
from a single shared, and thus even more highly distilled,
non-recursive business logic.
Selection sort can be defined using an O-coalgebra. This

coalgebra has a list as seed. At each step, it produces an
element of the output, and continues with the list this
element was removed from as the new seed. As such, we can
express it as an unfold.

select ∶∶ μL → O μL
select [] = ⋆
select (a ∶ r) = case select r of

⋆ → (a , r)
(b , r ′) → if a ≤ b

then (a , r)
else (b , a ∶ r ′)

selectSort = unfold select

Dually to the case of insertion sort, the coalgebra select can
itself be defined recursively, using an L-algebra. This algebra
traverses the input to produce the least element and the list
it was extracted from. To return this list, it needs to have
access to the tail of the list as well as the result of its recursive
application to it. This type of recursion is a modified version
of a fold, known as a paramorphism [30]. The access to the
original subterm(s) is encoded by an additional μL argument
in the carrier of the algebra.

para ∶∶ (L (μL × x ) → x ) → μL → x
sel ∶∶ (L (μL ×O μL) → O μL)
sel ⋆ = ⋆
sel (a , (r , ⋆)) = (a , r)
sel (a , (r , (b , r ′)))

∣ a ≤ b = (a , r)
∣ otherwise = (b , a ∶ r ′)

select = para sel

We have again entirely refactored two layers of explicit
recursion into structured recursion, this time for selection
sort. The outer layer of recursion is expressible as an unfold,
the inner as a fold with access to the original input (a
paramorphism), supplied with a non-recursive algebra:

selectSort = unfold (para sel)
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It remains to distill a shared non-recursive business logic
from the definitions of ins and sel, which justifies labeling
the two algorithms as dual.

2.3 Synthesis
The shared business logic of ins and sel is the following
parametrically polymorphic function swap.

swap ∶∶ L (x ×O x) → O (x + L x)
swap (a , (r , ⋆)) = (a , Left r)
swap (a , (r , (b , r ′)))

∣ a ≤ b = (a , Left r)
∣ otherwise = (b , Right (a , r ′))

We can reconstruct ins from it using the tupling operation
⟨f , g⟩ x = (f x , g x) applied to id and out ∶∶ νO → O νO.
We lift this to the codomain L νO of ins by 𝐿1, the action of
the functor L on maps, and postcompose it to swap.

ins = swap ∘ 𝐿1 ⟨id, out⟩

Dually, we can reconstruct sel using the cotupling
operation [⋅, ⋅] ∶∶ (b → a) → (c → a) → (b + c) → a
applied to id and in ∶∶ L μL → μL. We lift this to the domain
O μL of sel by 𝑂1, and precompose it to swap.

sel = 𝑂1 [id, in] ∘ swap

In summary, from one non-recursive business logic,
we obtain two algorithms with quite different recursion
behaviour.This shared business logic is given by the function
swap ∶∶ L (x ×O x) → O (x + L x), which is parametrically
polymorphic in x . We can phrase this as a distributive law.
Here a distributive law between functors F and G is a
parametrically polymorphic function of type F (G x) →
G (F x)). If one defines F+x = x + F x and F×x = x × F x ,
then swap is equivalent to a function of type L+(O×x) →
O×(L+x). This is proved by Hinze et al. [17, Appendix A] as
a specialization of a result by Lenisa et al. [23].
The two algorithms one obtains from it, by a fold of an

unfold and an unfold of a fold respectively, are called its
bialgebraic semantics. As we have reconstructed the two
algorithms we started with from the distributive law swap,
we now refer to them as the bialgebraic sorting algorithm
insertion/selection sort. This concludes our summary of the
bialgebraic approach to sorting [17].

2.4 Intrinsically Correct Bialgebraic Sorting
Our goal in this paper is to express an intrinsically verified
version of bialgebraic sorting algorithms. As such, our setting
changes from a partial to a total programming language, for
which we chose cubical Agda [44]. We distinguish Agda code
from Haskell code with coloured syntax highlighting.
The first issue to address is that in a total language,

inductive and coinductive datatypes no longer coincide.
Inductive datatypes are well-founded trees, while
coinductive datatypes are not necessarily well-founded. This

is because unfolding coalgebras may, in general, produce
infinite data. Consider for example the following function.

c ∶∶ 𝐴 → (() → O ())
c a = 𝜆() → (a , ())
Partially applied to a value of type A, it is an O-coalgebra
with the unit type as its seed type. At each step it outputs
the element a and continues with the single inhabitant of
the unit type as the new seed. The unfold of this coalgebra
is therefore an infinite stream of a’s.

This example showcases that whether an unfold produces
finite or infinite data depends entirely on the coalgebra
unfolded. All the coalgebras defined in the previous section
do in fact produce only finite output, but this fact needs to
be encoded in the type system.

Leaving this issue aside for the moment, we consider the
specification of sorting. There are two rules of sorting.

1. The output list must be ordered, i.e. consecutive
elements should be related by ≤.

2. The output must be a permutation of the input.
The first property has been verified intrinsically before,

e.g. by McBride [28].
It is not immediately clear how to state the second

property intrinsically. It relates the output to the input, so
it must be a property of the program, and not solely the
datatypes. There is a different, but still extrinsic, way of
stating it that lends itself to being stated intrinsically. This
reformulation is that mapping a list to the multiset of its
elements should be invariant under sorting.
We can state this property intrinsically using indexed

datatypes [13], namely:
Sorting is an index-preserving map between lists
and ordered lists indexed by the finite multiset of
their elements.

We formulate this as a type in Agda. First, we fix a type
A : Type ℓ (where ℓ is a universe level), with a total order on
it. Using a suitable type FMSet for finite multisets, we define
the following.

1. An indexed type EIList : FMSet A → Type ℓ of lists
indexed by the multiset of their elements;

2. An indexed type OEIList of ordered element-indexed
lists.

Then, a term inhabiting the following type is an intrinsically
correct sorting algorithm.

{g : FMSet A} → EIList g → OEIList g

Categorically, index-preserving maps are the arrows in
the category of families over a fixed indexed type, in this case
FMSet A → Type ℓ. We explore this categorical semantics
further in Section 6.
We use a shallow embedding [7, 15] of indexed type

families.Thismeans in particular that equality of themultiset
type FMSet A is determined by its type’s identity type in
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the host language. This is in contrast to using setoids [5],
where one internalizes equality as user-defined equivalence
relations for each type. This is our motivation for working in
cubical Agda – it allows us to specify a type’s equality using
higher inductive types. We return to this in Section 3.

To define sorting using bialgebraic semantics in the setting
of types indexed by finite multisets, we do the following.

1. Define base functors O, L : (FMSet A → Type ℓ) →
FMSet A → Type ℓ, such that:
a. EIList is the carrier of the initial L-algebra
b. OEIList is the carrier of the final O-coalgebra (!)

2. Define a version of the distributive law swap, which
by the definitions of L and O is intrinsically correct.

We made a note of item 1b for two reasons. First, it means
we encode orderedness at the level of base functors, not just
in the inductive datatype OEIList. Second, because OEIList
is inductive, in order to unfold into it we prove that all O-
coalgebras terminate after producing only finite output. This
means there is a coincidence of the carriers of the initial
algebra and final coalgebra. Thus, OEIList is an inductive
datatype admitting a coinduction principle.

Plan of the Paper.
• In Section 3 we motivate our choice of and introduce
a quotient inductive type for finite multisets.

• In Section 4 we define insertion/selection sort using
bialgebraic semantics in the setting of types indexed
by finite multisets. In Section 4.1, we define the base
functors L and O. In Section 4.3, we define the unfold
for O-coalgebras into OEIList, and explain why this
is possible. Finally, in Section 4.4, we define the
distributive law.

• In Section 5, we apply the same “lifting to the indexed
setting” to the two-step, non-trivial, bialgebraic sorting
algorithms quick/treesort and heapsort, also defined
in [17]. We obtain intrinsically correct insertion and
deletemin operations for search trees and heaps as
useful by-products.

• In Section 6 we give a set-theoretic categorical
semantics of our construction.

• Related work is discussed in Section 7. We discuss
working with types indexed by higher inductive types
in Section 8, and conclude in Section 9.

3 Finite Multisets in Cubical Agda
One of the crucial ingredients in our development is given
by the type FMSet A of finite multisets whose elements come
from some type A. We would like to define this type in such
a way that propositional equality coincides with equality of
finite multisets. In addition, we would like to be able to use
pattern matching on this type.
We use quotient inductive types to acquire the desired

type. While inductive types allow us to define data types by

specifying their constructors, quotient inductive types are
more expressive. We use quotient inductive types to define
data types by specifying their constructors and their equality.
This allows us to define the desired type of finite multisets:
the constructors give us the empty multiset and allow us to
add elements to multisets, and we say that by swapping two
elements, the multiset stays the same.
While quotient types have been studied in various

flavours of type theory [25], quotient inductive types became
prominent in homotopy type theory [42]. Consequently,
even though quotient types are absent in most proof
assistants based on dependent type theory, quotient
inductive types are present in cubical Agda. For this reason,
we use cubical Agda in this paper.

In this section, we discuss the type of finite multisets
in more detail. We start by giving a brief introduction to
cubical Agda, and quotient inductive types. After that, we
describe the type of finite multisets and we give the relevant
operations.

3.1 Brief Introduction to Cubical Agda
Cubical Agda is a proof assistant based on cubical type
theory [10], which is a flavour of homotopy type theory
(HoTT) [42]. Throughout this paper, we use the language of
HoTT and we use several ideas of homotopy type theory. In
this section, we briefly recall HoTT.

Homotopy type theory is an extension of Martin-Löf type
theory (MLTT) [26] that differs from classical MLTT in
how objects are identified. In MLTT, we view the identity
type 𝑎 = 𝑏 as the type of equality proofs between 𝑎 and 𝑏.
This type is described formally using an introduction rule
and an elimination rule. However, the identity type is not
fully specified in the sense that the identity of universes
and identity types themselves are not determined by these
rules. More specifically, one can consistently assume either
uniqueness of identity proofs (all proofs of identity are
equal themselves) or the univalence axiom, which states
that identity of types corresponds to equivalence. In HoTT,
we assume the univalence axiom, and thus the identity type
has a stronger specification in that foundation.

As a consequence, we also view types in a different way in
HoTT. While usually we interpret types in Martin-Löf type
theory as sets, we interpret types in homotopy type theory
as topological spaces. Terms are elements of a space, and
inhabitants of 𝑎 = 𝑏 are seen as paths from 𝑎 to 𝑏. If we have
inhabitants 𝑝, 𝑞 ∶ 𝑎 = 𝑏, i.e., two paths, then inhabitants of
𝑝 = 𝑞 are seen as homotopies between the paths 𝑝 and 𝑞. In
this interpretation, the identity type becomes proof relevant,
because it is a known fact in topology that not all paths
are homotopic. This is in contrast to the interpretation of
types as sets, where identity is viewed as a set of at most one
element.
The proof relevant nature of identity, a core concept in

homotopy type theory, and thus also in cubical Agda, is
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witnessed by discerning types by the level at which the
homotopical structure becomes “trivial”. One can develop a
whole hierarchy of homotopy levels, but in this paper, we
are only interested in mere propositions and sets.
A type A is called a (mere) proposition if for all terms a

and b of type A, we have a path a ≡ b. In a proposition, all
inhabitants are equal, and one can also show that all paths
of a proposition are equal. The only information we can get
about them is whether they are inhabited.
A type A is called a set if for all terms a and b of type A,

the type a ≡ b is a mere proposition. Concretely, this means
that there is at most one way in which two elements can
be equal, so identity is proof-irrelevant. This coincides with
how equality is treated in set theory, and for that reason, we
call such types sets.

3.2 Finite Multisets as aQuotient Inductive Type
Another core feature of cubical Agda is given by higher
inductive types [42] and, what we use in this paper, quotient
inductive types (QITs). In this section, we introduce quotient
inductive types, and demonstrate how to use them to define
finite multisets.
To specify a quotient inductive type, one must describe

its constructors and its path constructors. Constructors
tell us how to construct inhabitants of the type, and the
path constructors tell us how to prove equalities. Each
quotient inductive type is required to be a set, which is what
distinguishes them from the more general higher inductive
types. As an example, we have the type of finite multisets
due to [9], which is implemented in the standard library of
cubical Agda [39].

data FMSet (A : Type ℓ ) : Type ℓ where
[] : FMSet A
_∶∶_ : (x : A) → (xs : FMSet A) → FMSet A
comm : ∀ {x y xs} → x ∶∶ y ∶∶ xs ≡ y ∶∶ x ∶∶ xs
trunc : isSet (FMSet A)

We have two point constructors. The first one is [], which
gives us the empty multiset. The second one is ∶∶, which
allows us to add an element from A to some given multiset.
These two constructors are the same as what we would use
to define the inductive type of lists.
The difference between the type of lists and of finite

multisets comes from the path constructors. Whereas the
type of lists is fully specified by its point constructors,
the type of finite multisets also has path constructors.
More specifically, we have a path constructor comm, which
identifies the lists x ∶∶ y ∶∶ zs and y ∶∶ x ∶∶ zs. This means that
the order of the elements does not matter. Note that we can
apply the path constructor comm arbitrarily deep in the list
by using congruence. More precisely, we have a function
congS.
congS : ∀ {B : Type ℓ } → (f : A → B) (p : x ≡ y) → f x ≡ f y

This allows us to construct the following equality.
1 ∶∶ 2 ∶∶ 3 ∶∶ [] ≡⟨ congS (1 ∶∶_) comm ⟩ 1 ∶∶ 3 ∶∶ 2 ∶∶ []

We can also use composition of paths to swap as many
elements as desired. Composition has the following type.

_∙_ : x ≡ y → y ≡ z → x ≡ z

Finally, we also have a constructor trunc, which expresses
that our type is a set. This means that for all xs ys : FMSet A,
every two inhabitants p and q of type xs ≡ ys are equal.

In Cubical Agda, an elimination principle is generated for
HITs that allows one to map out of them by pattern matching
on their point- and path constructors. Using this, Choudhury
and Fiore [9, Definition 2.6] define an alternative eliminator
for FMSet A, which witnesses its universal property as the
free commutative monoid. Given a commutative monoid (M,
⊗) with M a set, and a map f : A → M, there exists a unique
map f♯ : FMSet A → M with the following properties:

f♯-nil : f♯ [] ≡ e
f♯-cons : ∀ x xs → f♯ (x ∶∶ xs) ≡ f x ⊗ f♯ xs
f♯-++ : ∀ xs ys → f♯ (xs ++ ys) ≡ f♯ xs ⊗ f♯ ys

An example application of this, which we use in
Section 4.3, is to define a length map by mapping to the
commutative monoid of the naturals with addition, by
sending elements of type A to 1. Besides the definition of the
map itself, this yields the following lemmata:

length : FMSet A → ℕ
length-[] : length [] ≡ 0
length-∶∶ : ∀ {x xs} → length (x ∶∶ xs) ≡ 1 + length xs
length-++ : ∀ {x y} → length (x ++ y) ≡ length x + length y

4 Multiset-Indexed Sorting
In this section we discuss how to lift the bialgebraic sorting
algorithm insertion/selection sort to the dependently-typed
setting. In Section 4.1 we discuss how to encode element-
indexing as well as the orderedness invariant for lists at
the level of base functors. We define the latter with an “All”
predicate transformer [16] for the finite multiset quotient
inductive type (QIT). In Section 4.3 we show how the finite
multiset index acts as a termination measure which means
that the inductive datatype OEIList is the carrier of the final
O-coalgebra.

4.1 Base Functors for Element-Indexed (Ordered)
Lists

Our goal in this section is to define the base functor for
lists indexed by the multiset of their elements. Concretely,
we define a dependent type FMSet A → Type ℓ. In cubical
Agda [44], we can define type families indexed by a HIT,
based on theory developed by Cavallo and Harper [8]. We
use this to define the desired base functor.
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data L (r : FMSet B → Type l) : FMSet B → Type l where
[] : L r []
_∶∶_ : {g : FMSet B} (x : B) → (r g) → L r (x ∶∶ g)

Similarly, we define the datatype EIList of lists indexed by
the finite multiset of their elements.

data EIList : FMSet B → Type l where
[] : EIList []
_∶∶_ : {g : FMSet B} (x : B) → (EIList g) → EIList (x ∶∶ g)

The same idea is used in both the base functor and the
type EIList. Whenever we add an element to a list, then
this element is also added to the multiset containing all the
elements.
If we have two multisets els and els’ and a path p : els ≡

els’ then we are able to transport lists xs of type EIList els to
lists of type EIList els’. To do so, we use the function subst,
and we can see this in action in the following example.

ex1 : EIList (1 ∶∶ 2 ∶∶ [])
ex1 = 2 ∶∶ 1 ∶∶ [] € subst EIList comm

Here € is flipped function application.
The output datatype, in addition to being indexed by its

elements, should also contain these elements in ascending
order. We make the observation that due to the transitivity
of ≤, requiring each element in a list to be smaller than its
successor is equivalent to requiring it be smaller than all
its successors – and that is something we can encode using
the multiset index. To encode this however, we first need to
define a predicate transformer stating that some predicate
holds for all elements of a multiset.

4.2 The All Predicate Transformer
Our goal in this section is to define a predicate transformer
All [16] that expresses that some predicate holds for all
elements in a finite multiset. A first attempt would be to
define this transformer more generally. Instead of defining it
as a predicate transformer, we define it as a transformer of
type families. More specifically, we would use the following
indexed inductive type.

data All (P : A → Type ℓ′ ) : FMSet A → Type (ℓ ⊔ ℓ′ ) where
[]A : All P []
_∶∶A_ : ∀ {x xs} → P x → All P xs → All P (x ∶∶ xs)

The constructor []A says that a predicate holds for all
members of the empty multiset, and the constructor ∶∶A says
that if some predicate holds for both x and all elements of
xs, then it also holds for all elements of x ∶∶ xs.

However, there are a couple of issues with this definition,
and we do not use it in the remainder. One requirement
that we have of the predicate transformer All, is that
whenever some predicate holds for all elements of x ∶∶
xs, then it predicate also holds for x and all elements xs.
More specifically, we require there to be a function uncons

that transforms inhabitants of All P (x ∶∶ xs) into pairs of
inhabitants of P x and All P (xs). However, Agda does not
allow us to pattern match on inhabitants of type All P (x ∶∶
xs), which prevents us from defining the desired function.
Intuitively, we can see why such a function would be
problematic for arbitrary type families. Since we are looking
at finite multisets, there could be multiple occurrences of x
in some finite multiset xs. If we have an inhabitant of type
All P xs, we might have chosen different terms of type P x
for different occurrences of x in xs, which would make the
function uncons not well-defined.
Instead we define the predicate transformer All by

eliminating from FMSet A to hProp ℓ, the homotopy type
of propositions. Homotopy types in cubical Agda are deeply
embedded [15] as dependent pairs of a Type and a proof that
it is of a respective homotopy level. So, for example, hProp
ℓ = Σ[ X ∈ Type ℓ ] isProp X. This is in contrast to a shallow
embedding in the structure of Type itself, as is done e.g. in
the Arend theorem prover [19].
Since FMSet A is the free commutative monoid (see

Section 3), given a predicate P : A → hProp ℓ we can
define a map P♯ : FMSet A → hProp ℓ by providing a
commutative monoid structure on hProp ℓ, and showing that
hProp ℓ is a set ([42, Theorem 7.1.7]). We choose the monoid
structure with the unit type as unit, and conjunction as the
multiplication operation. Note that this definition is the same
as what one would do for finite sets [14, Definition 5.8],
except that we do not have to take idempotence into account.
With the universal property of FMSet A, we also construct
the following operations on the predicate transformer All.
The utility function ⟨_⟩ returns the Type ℓ component of the
pair hProp ℓ.

uncons-A : ∀ {x xs} → All P (x ∶∶ xs) → ⟨ P x ⟩ × All P xs
_∶∶-A_ : ∀ {x xs} → ⟨ P x ⟩ → All P xs → All P (x ∶∶ xs)
[]-A : All P []
_++-A_ : ∀ {x y} → All P x → All P y → All P (x ++ y)
mapAll : {Q : A → hProp ℓ }

(P⇒Q : ∀ {x} → ⟨ P x ⟩ → ⟨ Q x ⟩) →
∀ {xs} → All P xs → All Q xs

To use the partially applied relation ≤ : A → A → Type ℓ
as a predicate, in the sense of a map of type A → hProp ℓ,
we need an additional premise ∀ (a b) → isProp (a ≤ b) to
construct the binary predicate ≤h : A → A → hProp ℓ.
We can now define the datatype of ordered, element-

indexed listsOEIList, given by base functorO, by requiring as
an additional argument to the _≤∶∶_ constructor a proof that
the element to be prepended is smaller than all the elements
in the multiset index of its recursive position.

data O (r : FMSet A → Type ℓ) : FMSet A → Type ℓ where
[] : O r []
_≤∶∶_ : {g : FMSet A} (x : A) → (rg : r g) →
All (x ≤h_) g → O r (x ∶∶ g)
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data OEIList : FMSet A → Type ℓ where
[] : OEIList []
_≤∶∶_ : {g : FMSet A} (x : A) → (rg : OEIList g) →
All (x ≤h_) g → OEIList (x ∶∶ g)

We define the following utility functions which are useful
when prepending an element to an ordered list of which we
know the head, because if it is smaller than the head, by
transitivity it is smaller than all the rest:

≤-to-# : a ≤ b → All (b ≤h_) xs → All (a ≤h_) xs
≤-to-# a≤b = mapAll (≤-trans a b _ a≤b)

_≤∶∶#_ : a ≤ b → All (b ≤h_) xs → All (a ≤h_) (b ∶∶ xs)
a≤b ≤∶∶# b#c = a≤b ∶∶-A ≤-to-# a≤b b#c

4.3 Final Coalgebra
Next we must prove that the inductive datatype OEIList is
the carrier of the finalO-coalgebra. This amounts to defining
a map unfoldO that iterates any given O-coalgebra until it
produces [], returning its output as a list. Because unfoldO’s
output is intended to be a list and not a coinductive stream,
it needs to be the case that all O-coalgebras terminate after
producing only a finite number of elements.Wewill motivate
that this is, in fact, the case, by considering a first attempt at
a definition of unfoldO:

pattern _≤∶∶_^_bc_ x rg g prf = _≤∶∶_ {g = g} x rg prf

unfoldO : {r : FMSet A → Type ℓ } →
( ∀ {g𝑟} → r g𝑟 → O r g𝑟) →
∀ {g : FMSet A} → r g → OEIList g

unfoldO grow {g} seed with grow seed
unfoldO grow .{[]} seed | [] = []
unfoldO grow .{x ∶∶ g’} seed | x ≤∶∶ seed′ ^ g’ bc prf =
(x ≤∶∶ unfoldO grow {g’} seed′ ) prf

First, some exposition is called for. The pattern keyword
allows us to define a pattern synonym for the _≤∶∶_
constructor. We append ^ to the argument in the recursive
position to annotate it with its multiset index. Second, we
make use of Agda’s implementation of with-abstraction [29]
to pattern-match on the result of the application of the
coalgebra grow to the seed value. This pattern-match lets us
refine the argument g with dot patterns [1] that document
the only possible value for it in each case, determined by the
value of grow seed.

We can now observe the fact that for any O-coalgebra
applied to a seed, the multiset index of the new seed, if
produced, is strictly smaller than that of the original. Recall
that an O-coalgebra c is an index-preserving map of type
∀ g₂ → r g₂ → O r g₂. Every seed value s to which it can
be applied, has some index g. If we take a step with c, we
either end up in the [] case of O, or we output some element
a and a new seed s’. This value, a ≤∶∶ s’, must have index a

∶∶ g’, which, due to index preservation, must be equal to the
original seed index g, i.e. g = a ∶∶ g’. Thus, g’ has “decreased”
with respect to g, by precisely the element output.

Therefore, the finite multiset index of a seed tells us exactly
which elements will be output before terminating (though
not in what order) when we iteratively apply c to it. This
allows every coalgebra to be simulated by an element of the
inductive datatype OEIList.
Given this exposition, we might expect the termination

checker to accept this function definition. However, taking
arguments of HITs matched by dot patterns into account
when checking termination is in general inconsistent [34].
Therefore, we must justify termination by manually, and we
do this by using well founded induction. We define a family
of functions indexed by FMSet A by induction on the length
of the index.

We use the length function defined in Section 3 to define
a binary relation <l on FMSet A as the inverse image of < on
ℕ under length. As the inverse image of a well founded
relation, it is again well founded. Consequently, we can
define unfoldO using well founded induction, with the proof
of <l supplied as an argument to the induction hypothesis.

<l-∶∶ : ∀ {x xs} → length xs < length (x ∶∶ xs)
<l-∶∶ {x} {xs} = 0 , refl

unfoldO : ( ∀ {g𝑟} → r g𝑟 → O r g𝑟) →
∀ {g} → r g → OEIList g

unfoldO grow {g = g} = WFI<l.induction step g where
step : ∀ x → (∀ y → y <l x → (r y → OEIList y)) →
(r x → OEIList x)

step g IH seed with grow {g𝑟 = g} seed
step .{[]} IH seed | [] = []
step .{x ∶∶ g′ } IH seed | x ≤∶∶ seed′ ^ g′ bc prf =
(x ≤∶∶ IH g′ <l-∶∶ seed′ ) prf

We note that m < n is defined as Σ[ k ∈ ℕ ] k + (suc m) ≡ n,
which is why witnesses of proofs of type xs <l ys are pairs.

4.4 Putting It All Together
Now we put the ideas in this section together to define
sorting algorithms using distributive laws. We assume that
we have a type A together with a total order ≤. More
specifically, that ≤ is valued in propositions, reflexive,
transitive, and it satisfies totality. We express totality as
follows.

≤?≥ : (a b : A) → (a ≤ b) ⊎ (b ≤ a).
To define the distributive law, we use the product and

coproduct of indexed types. We construct the products and
coproducts pointwise.

_+_ _×_ : (l : X → Type ℓ′ ) (r : X → Type ℓ′′ ) →
(i : X ) → Type (ℓ′ ⊔ ℓ′′ )

(l + r ) i = l i ⊎ r i
(l × r ) i = l i × r i
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Using these operations on indexed types, we define the
distributive law that we use for insertion- and selection sort.

swap : {r : FMSet A → Type ℓ } → {g : FMSet A} →
L (r × O r ) g → O (r + L r ) g

swap [] = []
swap (a ∶∶ (x , [])) = (a ≤∶∶ inl x) []-A
swap (a ∶∶ (x , (b ≤∶∶ x’) b#x’)) with a ≤?≥ b
…| inl a≤b = (a ≤∶∶ inl x) $ a≤b ≤∶∶# b#x’
…| inr b≤a = (b ≤∶∶ inr (a ∶∶ x’)) $ b≤a ∶∶-A b#x’ €

subst (O (_ + L _)) comm

Here $ is the operator for function application with
negative precedence, € is the flipped application operator.
We conclude this section by defining insertion- and

selection sort via bialgebraic semantics.

insertSort selectSort : {g : FMSet A} → EIList g → OEIList g
insertSort {g = g} =
foldL (apoO (swap ∘ L₁ (⟨ id , outO ⟩ {g})))

selectSort {g = g} =
unfoldO (paraL (O₁ ([ id , inL ] {g}) ∘ swap))

5 Lifting Treesorts
So far we have seen and verified the naive bialgebraic sorting
algorithm insertion/selection sort. However, these are not
the only bialgebraic sorting algorithms defined by Hinze et al.
[17]. They also define tree/quicksort and variants of heap
sort. We continue by intrinsically verifying these algorithms.
The algorithms treesort and heapsort are defined by

building up and then tearing down a binary search tree and
heap respectively. Quicksort joins their ranks as such a two-
step algorithm if one reifies its call tree as a binary search
tree, a realization due to Turner [41]. Both the building up
and the tearing down step can be defined using bialgebraic
semantics.

5.1 Base Functors
In the first phase of these algorithms we build up binary
search trees and heaps respectively. To use bialgebraic
semantics we have to encode their orderedness invariants at
the level of base functors in FMSet A → Type ℓ.
We have only one choice in how to do this using only

the multiset index. That is to add the orderedness invariants
as additional constructor arguments using the All predicate
transformer (see Section 4.2). We only show the search tree
base functor here. The base functor H for heaps is identical
except that the two proof arguments are All (x ≤h_) g₁ and
All (x ≤h_) g₂.

data S (r : FMSet A → Type ℓ ) : FMSet A → Type ℓ where
leaf : S r []
_|⌈_⌉|_ : ∀ {g₁ g₂} → (lt : r g₁) → (x : A) → (rt : r g₂) →
All (_≤h x) g₁ → All (x ≤h_) g₂ → S r (x ∶∶ g₁ ++ g₂)

The inductive data type corresponding to S is called STree.
We also introduce a pattern synonym for |⌈_⌉| which allows
us to to use infix notation while explicitly writing the implicit
FMSet A arguments. We append ^ to the arguments in the
recursive positions to annotate them with their multiset
index.

pattern _^_|⌈_⌉|_^_ lt g₁ x rt g₂ p1 p2 =
_|⌈_⌉|_ {g₁ = g₁} {g₂ = g₂} lt x rt p1 p2

5.2 Final Coalgebra
The intermediate data structures of binary search trees and
heaps that we define are the carriers of both the initial
algebra and the final coalgebra for their base functor. In
fact, these two-step algorithms illustrate the significance of
this coincidence even more. We use unfold when building
up the intermediate data structure and fold when tearing it
down.

We thus have to define unfold for S. As in Section 4.3, we
define a preliminary version which will not be accepted by
the termination checker, but which will guide us in defining
it by well founded induction.

unfoldS : {r : FMSet A → Type ℓ } →
( ∀ {g𝑟} → r g𝑟 → S r g𝑟) →
∀ {g : FMSet A} → r g → Stree g

unfoldS grow {gs} seed with grow seed
unfoldS grow .{[]} seed | leaf = leaf
unfoldS grow .{x₁ ∶∶ g₁ ++ g₂} seed |
(ls ^ g₁ |⌈ x₁ ⌉| rs ^ g₂) prf₁ prf₂ with

unfoldS grow {g₁} ls | unfoldS grow {g₂} rs
… | left | right = (left |⌈ x₁ ⌉| right) prf₁ prf₂

In this definition, the arguments in the recursive calls, g₁
and g₂, are not even structurally smaller than the original
argument, x₁ ∶∶ g₁ ++ g₂, so it would be rejected by the
termination checker regardless.We therefore need to provide
proofs that g₁ <l x₁ ∶∶ g₁ ++ g₂ and g₂ <l x₁ ∶∶ g₁ ++ g₂,
respectively.These are provided by the lemmas sub𝑙 and sub𝑟,
for whose implementation we refer to the formalization [2].
The reason they, perhaps counterintuitively, respectively
take g₂ and g₁ as arguments (and not the other way around),
is because these are the witnesses for the difference in length
between the original argument and that of the recursive calls.

unfoldS : ( ∀ {g𝑟} → r g𝑟 → S r g𝑟) →
∀ {g} → r g → Stree g

unfoldS grow {g = g} = WFI<l.induction step g where
step : ∀ x → (∀ y → y <l x → (r y → Stree y)) →
(r x → Stree x)

step gs IH seed with grow {g𝑟 = gs} seed
…| leaf = leaf
…| (lt ^ g₁ |⌈ x₁ ⌉| rt ^ g₂) p₁ p₂ =

(IH g₁ (sub𝑙 g₂) lt |⌈ x₁ ⌉| IH g₂ (sub𝑟 g₁) rt) p₁ p₂

42



CPP ’25, January 20–21, 2025, Denver, CO, USA Cass Alexandru, Vikraman Choudhury, Jurriaan Rot, and Niels van der Weide

We define apoS, the early-return variant of unfoldS,
similarly. Note that no new proof obligations arise in the
definition of apoS with respect to unfoldS.
The proof arguments of the datatype are irrelevant to

the definition of unfoldS. This observation also means that
the definition of unfold for the heap base functor H is
syntactically identical. We consider it a question for future
work whether the use of e.g. ornaments [27], or possibly
a folklore technique using higher-kinded types [24] could
spare one this duplication.

5.3 Distributive Laws
Having defined the datatypes and requisite higher-order
functions, we can define the distributive laws for the two-
step bialgebraic sorting algorithms. They are structurally the
same as the ones in [17], but differ in that they additionally
carry local proofs of element preservation and orderedness.
We refer the reader to the formalization [2] for these detailed
proofs.
Here, we focus instead on the fact that subcomponents

of the bialgebraic sorting algorithms have uses in their own
right. For that we first give an operational intuition of two-
step bialgebraic sorting. We consider tree/quicksort in detail.
As both steps of bialgebraic semantics occurring in the

tree-based algorithms yield two algorithms, two for growing
and two for flattening a search tree, one can combine them
to obtain four algorithms with distinct recursion behaviour.
The way the search tree is built up determines whether we
are dealing with tree sort or quicksort.

Quicksort builds the search tree coalgebraically. It outputs
the pivot as the top node of the binary tree in each step. Its
nested step, which partitions the list, is algebraic. It begins
with the empty list and successively adds elements to the
lists left or right of the pivot.
Treesort builds up the search tree algebraically. It

successively inserts elements from the input into an initially
empty tree. The nested step of treesort is coalgebraic, as
insertion of an element into a tree successively outputs the
nodes of the new tree until the proper insertion point is
found.
5.3.1 Intrinsically Correct Insertion.
The distributive law that these two variants arise from is
sprout : … → L ((S ×) r ) g → S ((L +) r ) g . We want
to highlight that the nested step of treesort doubles as an
intrinsically correct function for insertion into a binary tree.

treeSortStep : {g : FMSet A} → (L Stree) g → Stree g
treeSortStep {g} = apoS (sprout ∘ L₁ (⟨ id , outS ⟩ {g}))

Intrinsically correct insertion should take a pair of an
element and a binary search tree, and return a search tree
with this element inserted. If we index the pair by the element
and the elements of the search tree, this can again be encoded
as index preservation. Such a pair actually corresponds to
the _∶∶_ case of L. We introduce an auxiliary datatype for it:

data Cons (r : FMSet A → Type ℓ) : FMSet A → Type ℓ
where _∶∶_ : ∀ {g} → (x : A) → (r g) → Cons r (x ∶∶ g)

We obtain intrinsically correct insertion by adapting tree
sort’s nested step. Note that the _∶∶_ constructor here is
overloaded as a constructor of both Cons and L.

insert : {g : FMSet A} → (Cons Stree) g → Stree g
insert (a ∶∶ c2) = treeSortStep (a ∶∶ c2)

5.3.2 Intrinsically Correct Deletion.
Flattening a search tree into a list can again be done in the
two ways. Coalgebraically, we extract the least element in
each step. This extraction in turn is algebraic, as we start
at the leaves and in each step return the candidate least
element and the tree it was extracted from. Algebraically, we
merge sorted sublists around their pivot. This operation is
coalgebraic, as we incrementally output elements in order
as we append the lists. The distributive law that these two
variants arise from is called wither, and can be found in the
Agda formalization [2].

A deletemin operation extracts the least element from a
binary search tree. It is intrinsically correct if

• the element extracted is indeed smaller than all the
elements

• the elements of the input tree are the elements of the
output tree, plus the extracted element

• the output tree is still a search tree
The nested step of the coalgebraic variant of tree flattening
is, without any adjustment, intrinsically correct.

deleteMin : {g : FMSet A} → Stree g → O Stree g
deleteMin {g} = (paraS ( O₁ ([ id , inS ] {g}) ∘ wither))

6 Ordered Lists as a Final Coalgebra
In the previous sections we described how to formulate and
prove intrinsic correctness of sorting algorithms in cubical
Agda. In the current section we view our work through
the lens of category theory, and in particular, we show
how ordered lists can be obtained as a certain type of final
coalgebra in a slice category over finite multisets. Detailed
proofs can be found in Appendix A.

In order to see why using the slice category is relevant, we
first note that the sorting algorithms as studied in Hinze et al.
[17] are based on instantiating the framework of distributive
laws and bialgebras [20, 40] in the category Set of sets and
functions. This instantiation mimics the development in
Section 2, where it is written in terms of functional programs.
We note that the Set-based 1-categorical semantics given
in this section are compatible with our homotopy-type-
theoretic formalization [35].
Throughout this section, let (𝐴, ≤) be a totally ordered

set of data elements whose lists we wish to sort. We are
interested in the list functor, defined by 𝐿∶ Set → Set,
𝐿(𝑋) = 1 + 𝐴 × 𝑋, where 1 = {⋆}. As before, we alias this
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functor as 𝑂 = 𝐿, and the swap operation then arises as a
distributive law. This distributive law gives rise to a map

sort ∶ 𝜇𝐿 → 𝜈𝐿
from the initial 𝐿-algebra 𝜇𝐿 to the final 𝑂-coalgebra 𝜈𝑂,
which is the actual operation of sorting, defined either via
initiality or via finality. The initial algebra consists of the
set 𝐴∗ of arbitrary lists, which makes sense, but the final
coalgebra consists of all finite and infinite lists (e.g., [18]).
Moreover, these are not necessarily ordered.
We therefore show how to obtain the object of ordered

lists as a final coalgebra in a different category. To this end,
let ℳ(𝐴) = {𝜑∶ 𝐴 → ℕ ∣ {𝑥 ∣ 𝜑(𝑥) ≠ 0} is finite} be the
set of finitely supported multisets over 𝐴. The slice category
Set/ℳ(𝐴) has as objects pairs (𝑋, 𝑓∶ 𝑋 → ℳ(𝐴)) where
𝑋 is a set and 𝑓 a function, and a morphism ℎ∶ (𝑋, 𝑓) →
(𝑌 , 𝑔) is a map ℎ∶ 𝑋 → 𝑌 such that 𝑔 ∘ ℎ = 𝑓.

From a type theoretic perspective, we can understand
objects of the slice category as dependent types. If we have
a type 𝐵, then pairs of types 𝐴 and functions 𝑓∶ 𝐴 → 𝐵 are
the same as a type families fib ∶ 𝐵 → Type. Families of sets
fib ∶ 𝐵 → Set correspond to pairs of sets 𝐴 and functions
𝐴 → 𝐵. For this reason, we can view types dependent on
multisets as functions into the type of multisets.

We define the functor �̂� ∶ Set/ℳ(𝐴) → Set/ℳ(𝐴) by

�̂�(𝑋, 𝑓) = (1 + 𝐴 × 𝑋, [ ̄0, 𝜆(𝑎, 𝑥). 𝜂(𝑎) ⊎ 𝑓(𝑥)])
where ⊎ is notation for multiset union, 𝜂 singleton inclusion,
and ̄0 denotes the function mapping the single element of
1 to the empty multiset. Let elmts ∶ 𝐴∗ → ℳ(𝐴) be the
function that maps a list to the multiset of its elements (that
is, forgetting about the order of elements). Note that the
dependent type EIList in our Agda development corresponds
to the slice map elmts ∶ 𝐴∗ → ℳ(𝐴). The initial algebra of
�̂� is essentially that of 𝐿.

Lemma 6.1. The object (𝐴∗, elmts) is the carrier of the initial
algebra for �̂�.

Perhaps more surprisingly, the fact that we work in the
slice category over ℳ(𝐴) ensures an initial algebra/final
coalgebra coincidence. Where the final 𝐿-coalgebra consists
of lists and (infinite) streams, the final �̂�-coalgebra contains
only finite lists.

Theorem 6.2. The object (𝐴∗, elmts) is the carrier of the final
coalgebra for �̂�.

To see why the final coalgebra consists only of finite lists,
let 𝑐 ∶ (𝑋, 𝑓) → �̂�(𝑋, 𝑓) be a coalgebra.The key observation
is that, if 𝑐(𝑥) = (𝑎, 𝑥′), then 𝑓(𝑥′)(𝑎) = 𝑓(𝑥)(𝑎) − 1, i.e.,
the size of the multiset of the next state is strictly smaller
than that of the current state. As a consequence, iterating the
coalgebra on a given state 𝑥 ∈ 𝑋 can only happen finitely
many times before reaching the element ⋆ ∈ 1. Notice that
this argument relies on the multisets having finite support.

Using the slice maps, we can also define an ordered variant
of 𝐿. Let �̂� ∶ Set/ℳ(𝐴) → Set/ℳ(𝐴) be given by:

�̂�(𝑋, 𝑓) = (1 + 𝐴 ×≤ 𝑋, [ ̄0, 𝜆(𝑎, 𝑥). 𝜂(𝑎) ⊎ 𝑓(𝑥)]), where
𝐴 ×≤ 𝑋 = {(𝑎, 𝑥) ∈ 𝐴 × 𝑋 ∣ 𝑎 ≤ min{𝑏 ∣ 𝑓(𝑥)(𝑏) ≠ 0}} .

Let 𝐴∗
≤ be the set of ordered lists. The type OEIList in

our earlier Agda development corresponds to the slice map
elmts ∶ 𝐴∗

≤ → ℳ(𝐴). We arrive at the main observation of
this section:

Theorem 6.3. The object (𝐴∗
≤, elmts) is the carrier of a final

coalgebra for �̂�.

This result encapsulates two properties that are essential
for our purposes. First, the final coalgebra consists only of
finite lists (as in Theorem 6.2), and second, they are ordered.
The orderedness is enforced by the use of the restriction
𝐴 ×≤ 𝑋 in the definition of �̂�.

In conclusion, maps from the initial �̂�-algebra to the final
�̂�-coalgebra are of the following form:

𝐴∗ 𝐴∗
≤

ℳ(𝐴)

sort

elmts elmts

This is precisely the type of intrinsically correct sorting
algorithms: they turn arbitrary lists into ordered lists, with
the same elements, thanks to the commutativity of the above
diagram.

Remark. The essence of the above result lies in an initial-
algebra/final-coalgebra coincidence, enforced by the slicing
over finite multisets. The recent [21] provides a systematic
study of such coincidences in a fibrational setting. The
coincidence there occurs in a specific fibre, as opposed to
the total category as above. We leave a logical/fibrational
treatment of the above development for future work. Note
that this perspective is not immediately clear, as the functor
�̂� is not a lifting of𝑂 (it is not possible to express orderedness
in the base category).

7 Related Work
The insight that the sorting algorithms insertion/selection
sort, tree/quicksort and heapsort can be expressed as two
algorithms for the price of one shared business logic in
the form of a distributive law is due to Hinze et al. [17].
However, they did not prove the correctness or termination
of these algorithms. For the analysis of intrinsic correctness
in the current paper, since bialgebraic semantics necessarily
makes use of final coalgebra semantics, it was necessary to
prove that all coalgebras constructed are terminating. We
proved this more generally, by showing it is the case for
all coalgebras for the element-indexed ordered list / tree
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base functors we defined. This went hand-in-hand with our
intrinsic verification of the correctness of these algorithms.
With regards to the intrinsic encoding of orderedness

invariants, McBride [28, Section 4] presents an approach of
defining datatypes with orderedness invariants by having
them be indexed by bounds, and having constructors respect
those bounds. These bound requirements are then pushed
inward, instead of being “measurements” that are propagated
outward. We stuck with the more traditional “measurement”
approach, as the multiset index was already required for the
element preservation property and it served a double use in
encoding the orderedness invariant.
Kupke et al. [22] use “fresh lists” to define ordered lists

where elements to be prepended are required to be smaller
than all the elements in the list. This is not done at the level
of base functors, however, but only in the definition of the
inductive datatype, and as such doesn’t use indexing. In fact,
they show that ordered lists are a possible implementation
of finite multisets.
On the topic of element-preservation, Danielsson [11]

defines multiset equivalence in Agda, and as an example
application extrinsically verifies that a tree-sort preserves
elements.
Appel [3] provides a verification of insertion- and

selection-sort, using multisets modeled as both maps of type
ℕ → A and lists up to bag equivalence. They also implicitly
encounter the issue of selection sort being coalgebraic in
nature and thus not structurally recursive on the list; they
address this by providing the length of the list as a fuel
parameter. This differs from our approach in that the length
needs to be computed and passed as a parameter explicitly.
Themain difference is that the approach in op. cit. is extrinsic,
as opposed to the intrinsic verification approach in the
current paper.

The approach of ensuring element preservation by means
of indexing by a multiset has been experimented with
before by Atkey [4]. The approach there was to develop
an embedded domain-specific language for a subset of the
linear lambda calculus where a context keeps track of a list
of terms, which substructural rules allow to be treated as
a multiset. However, this approach means that algorithms
are expressed as terms in a deeply-embedded DSL, whose
interpretation yields a sorting algorithm in the host language,
which is a level of indirection not present in our case.

8 Discussion
Throughout the development, we used inductive types
indexed by higher inductive types. While this gives us a
nice and convenient way to define EIList and OEIList, it does
comewith some disadvantages. Concretely, the normal forms
of types indexed by HITs are only given by the constructors.
As a consequence, the algorithms that we described in our
paper do not necessarily compute to a list.

The term insertSort (2 ∶∶ 1 ∶∶ []), for example, does not
compute to 1 ≤∶∶ 2 ≤∶∶ [], but to a transport. To understand
why, let us consider a simple example of a type indexed by a
HIT.

data I : Type where
o : I
i : I
seq : o ≡ i

data T : I → Type where
x : T o

If we try to normalize the term subst T seq x, then cubical
Agda returns the following term.

transpX-T (λ n → … ) i0 x
This result is fair. Since we did not specify any constructor

of T i, there is no constructor to which it even could evaluate.
This behavior corresponds to what has been described by
Cavallo and Harper [8]. They described the canonical normal
forms of types indexed by higher inductive types as either a
constructor, a coercion, or a composition.
To obtain a term of a normal form that isn’t a transport,

we have to convert the ordered, element-indexed list back
into an ordinary list. To this end we define the following
conversion.

OEIListToList : {g : FMSet A} → OEIList g → List A
OEIListToList [] = []
OEIListToList ((x ≤∶∶ xs) _) = x ∶∶ OEIListToList xs

Then, OEIListToList (insertSort (2 ∶∶ 1 ∶∶ [])) normalizes to
1 ∶∶ 2 ∶∶ []. However, this could be considered a workaround.
If we want transports for element-indexed lists to reduce,
there are several approaches we could take. One of these
would be to define element-indexed lists in a different way.
Instead of defining this type as an indexed inductive type,
we could also define it using recursion on finite multisets.
This avoid the usage of indexed indexed types, but it does
come at another cost. First, we are required to use the
free symmetric monoidal groupoid [32, 33] instead. This
is because the recursion principle of finite multisets only
allows us to eliminate into a type that is a set. Since the type
of sets is not a set itself, we cannot map into it using the
recursion principle. The free symmetric monoidal groupoid,
on the other hand, is defined to be a groupoid rather than a
set, and for that reason, we can use recursion to map into the
type of sets. The second cost is that this alternative definition
is more convoluted and less readable.
Another possible solution would require further study

of types indexed by higher inductive types. If we define
a type indexed by a HIT, then their canonical normal
forms are not fully specified, because transports also are
canonical normal forms. One could view this as some kind of
underspecification of the indexed type, since the transport
functions are not fully specified, in the sense that they do not
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always reduce further. A version of indexed types in which
one could also specify what the transport functions reduce
to would be able to overcome this hindrance. We leave the
study of such types as future work.

9 Conclusion and Future Work
We have proposed a way to define intrinsic correctness of
sorting algorithms in cubical Agda. To this end we made use
of types indexed by finite multisets, encoded as a quotient
inductive type. With this foundation we have shown how, in
the bialgebraic approach to sorting algorithms, verifying
the basic underlying distributive laws that contain the
essential business logic suffices to ensure correctness of the
ensuing sorting algorithms. In particular, we have verified
insertion/selection sort as a pair of algorithms generated by a
simple distributive law, and treesort/quicksort and heapsort
as more elaborate examples.

There are several avenues for future work.

Recursive and Well-Founded Coalgebras. From a
coalgebraic perspective, the main new idea is that indexing
over a multiset yields finite lists as a final coalgebra.The final
coalgebra thereby becomeswell-founded, suggesting a link to
the theory of (co)recursive and well-founded coalgebras [38].
It would be interesting to further explore the possible role
of these notions in bialgebraic semantics.

Beyond Sorting. The theory of bialgebras and distributive
laws was originally proposed by Turi and Plotkin in the
context of operational semantics, where distributive laws
generalise the celebrated GSOS rule format [20, 40]. They
have been used as well in (co)algebraic presentations of
automata constructions [36]. It remains open to investigate
similar indexing as proposed in this paper in such examples,
possibly yielding proof methods for finiteness of such calculi
and constructions at a high level of generality.
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A Proofs for Section 6
A.1 Initial Algebra
Consider the following functions:

cons ∶ 𝐴 × 𝐴∗ → 𝐴∗

cons ≔ 𝜆(𝑎, ⟨𝑎0, …, 𝑎𝑛−1⟩). ⟨𝑎, 𝑎0, …, 𝑎𝑛−1⟩
̄⟨⟩ ∶ 1 → 𝐴∗

̄⟨⟩ ≔ 𝜆 ⋆ . ⟨⟩
in ∶ 𝐿𝐴∗ → 𝐴∗

in ≔ [ ̄⟨⟩, cons]

Lemma A.1. (𝐴∗, in) is the initial 𝐿-algebra.

Proof. Let (𝑋, [𝑛, 𝑐]) be some 𝐿-algebra.Then wemust show
there is a unique algebra morphism 𝑓 from [ ̄⟨⟩, cons] to [𝑛, 𝑐],
s.t. the following diagram commutes:

𝐿𝐴∗ 𝐿𝑋

𝐴∗ 𝑋

𝐿𝑓

[ ̄⟨⟩,cons] [𝑛,𝑐]

∃𝑓!

This is requirement is expressed as the following equalities:

𝑓(⟨⟩) = 𝑛(⋆)
𝑓(cons(𝑎, 𝑟)) = 𝑐(𝑎, 𝑓(𝑟))

We define 𝑓 as the unique solution to this system of equations.
�

Notation A.1. For a functor 𝐹 with an initial algebra in𝐹,
we write ⦅𝑎⦆ for the unique morphism from in𝐹 to some
target 𝐹-algebra 𝑎.

We use the initiality just proven to define a function which
maps a list to the multiset of its elements:

Definition A.1. Let elt ≔ [ ̄0, 𝜆(𝑎, 𝑟). 𝜂(𝑎) ⊎ 𝑟] be the
algebra for multiset insertion. Then elt uniquely extends
to an 𝐿-algebra morphism elmts ≔ ⦅elt⦆ ∶ 𝐴∗ → ℳ(𝐴)
which maps a list to the multiset of its elements.

𝐿𝐴∗ 𝐿(ℳ(𝐴))

𝐴∗ ℳ(𝐴)

[ ̄⟨⟩,cons]

𝐿⦅elt⦆

elt=[0̄,⊎∘(𝜂×id)]
⦅elt⦆

Remark. We write 𝜆(𝑎, 𝑟). 𝜂(𝑎) ⊎ 𝑟 pointfree as ⊎ ∘ (𝜂 × id).

Lemma (6.1). ((𝐴∗, elmts), in) is the initial �̂�-algebra.

Proof. We note that there is an isomorphism of categories
Alg(�̂�) ≃ Alg(𝐿)/elt. Namely, given an algebra �̂�(𝑋, 𝑔)

𝑎
−→

(𝑋, 𝑔), the slice map of its domain, [ ̄0, ⊎ ∘ (𝜂 × 𝑔)] is
equivalently elt ∘ 𝐿𝑔, and 𝑔 is an 𝐿-algebra-morphism from
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𝑎 to elt:

𝐿𝑋 𝑋

𝐿(ℳ(𝐴)) ℳ(𝐴)

𝑎

𝐿𝑔
[0̄,⊎∘(𝜂×𝑔)] 𝑔

elt=[0̄,⊎∘(𝜂×id)]

This isomorphism just exchanges slice map- and morphism
components. We thus proceed to prove that ((𝐴∗, in), ⦅elt⦆)
is initial in Alg(𝐿)/elt.
Let ((𝑋, 𝑎), 𝑔) be an object in Alg(𝐿)/elt. We

must construct a unique 𝐿-algebra morphism 𝑓 from
((𝐴∗, in), ⦅elt⦆) to ((𝑋, 𝑎), 𝑔), s.t. the following diagram
commutes:

𝐿(ℳ(𝐴))

𝐿𝐴∗ 𝐿𝑋

ℳ(𝐴)

𝐴∗ 𝑋

elt

𝐿𝑓

in

𝐿⦅elt⦆

𝑎

𝐿𝑔

𝑓

⦅elt⦆ 𝑔

We define 𝑓 ≔ ⦅𝑎⦆ by initiality of (𝐴∗, in). It remains to
prove that ⦅𝑎⦆ is a slice morphism, i.e. 𝑔 ∘ ⦅𝑎⦆ = ⦅elt⦆.
This follows from the uniqueness of ⦅elt⦆ ∶ (𝐴∗, in) →
(ℳ(𝐴), elt), since 𝑔 ∘ ⦅𝑎⦆ is an 𝐿-algebra morphism of the
same type. �

A.2 Final Coalgebra
Theorem (6.2). ((𝐴∗, elmts), in−1) is the final �̂�-coalgebra.

Proof. We define the following function length that gives us
the number of elements of a finite multiset:

length ∶ ℳ(𝐴) → ℕ

length(𝜑) ≔ ∑
𝑎∈𝐴

𝜑(𝑎)

This sum is well defined since ℳ(𝐴) has finite support.
We define the following relation 𝑥 ≼ 𝑦 ≔ length(𝑥) <

length(𝑦). This relation is well founded as the inverse image
under length of the well founded relation <.

Consider an 𝐿-coalgebra 𝑐 ∶ (𝑋, 𝑔) → �̂�(𝑋, 𝑔).

𝑋 𝐿(𝑋)

ℳ(𝐴)
𝑔

𝑐

[⊎∘(𝜂×𝑔),0̄]
(1)

We want to define a unique coalgebra morphism to in−1.
Note that this is equivalent to defining a coalgebra-to-
algebra morphism to in, since by Lambek’s lemma, in is
an isomorphism. So we must construct a unique morphism

𝑓 s.t. the following diagram commutes.

𝐿𝑋 𝐿𝐴∗

ℳ(𝐴)

𝑋 𝐴∗

�̂�𝑔

𝐿𝑓

[ ̄⟨⟩,cons]

�̂�elmts

𝑔

𝑐

𝑓
elmts

(2)

We do this by switching from the sliced to the indexed
perspective and defining 𝑓 as a family of maps in Set between
the fibres of 𝑔 and elmts, using well founded recursion.

(𝑓𝑥 ∶ 𝑔−1(𝑥) → elmts−1(𝑥))𝑥∈ℳ(𝐴)

Concretely, well founded recursion gives us a unique such
family of maps (𝑓𝑥)𝑥∈ℳ(𝐴), provided we can construct 𝑓𝑥
given (𝑓𝑦)𝑦∈{𝑧∣𝑧≼𝑥}. We define 𝑓𝑥 as follows.

𝑓𝑥 ∶ 𝑔−1(𝑥) → elmts−1(𝑥)

𝑓𝑥(𝑠) ≔ {⟨⟩ 𝑐(𝑠) = ⋆
cons(𝑎, 𝑓𝑔(𝑠′)(𝑠′)) 𝑐(𝑠) = (𝑎, 𝑠′)

It remains to show 𝑔(𝑠′) ≼ 𝑥. From 𝑠 ∈ 𝑔−1(𝑥) ⇒ 𝑥 =
𝑔(𝑠) and 𝑔(𝑠)

(1)
= 𝜂(𝑎) ⊎ 𝑔(𝑠′) we have length(𝑔(𝑠′)) <

length(𝜂(𝑎) ⊎ 𝑔(𝑠′)) = length(𝑔(𝑠)) = length(𝑥).
It is unique as the unique function making diagram (2)

commute (proof by diagram chase). �

Definition A.2 (Ordered Lists). Ordered lists are lists whose
consecutive elements are related by ≤.

𝐴∗
≤ ≔ {⟨𝑎0, … , 𝑎𝑛−1⟩ ∈ 𝐴∗ ∣

𝑛−2
⋀
𝑖=0

𝑎𝑖 ≤ 𝑎𝑖+1}

Lemma A.2. Let 𝑥 = ⟨𝑎0, … , 𝑎𝑛−1⟩ in:

min{𝑏 ∣ elmts(𝑥)(𝑏) ≠ 0} = min{𝑎0, … , 𝑎𝑛−1}

Proof. By induction on 𝑥 �

Theorem (6.3). ((𝐴∗
≤, elmts), in−1) is the final �̂�-coalgebra.

Proof. The wellfoundedness argument is the same as the one
above. We additionally need to check that 𝑓𝑥 ∶ 𝑔−1(𝑥) →
elmts−1(𝑥) respects the refinement of 𝐴∗ to 𝐴∗

≤. Consider
some �̂�-coalgebra 𝑐 ∶ (𝑋, 𝑔) → (1+𝐴×≤ 𝑋, [ ̄0, ⊎∘(𝜂×𝑔)]).
We examine the clauses of 𝑓:

𝑓𝑥 ∶ 𝑔−1(𝑥) → elmts−1(𝑥)

𝑓𝑥(𝑠) ≔ {⟨⟩ 𝑐(𝑠) = ⋆
cons(𝑎, 𝑓𝑔(𝑠′)(𝑠′)) 𝑐(𝑠) = (𝑎, 𝑠′)

Let 𝐴∗
≤ ∋ ⟨𝑎0, … , 𝑎𝑛−1⟩ = 𝑓𝑔(𝑠′)(𝑠′). In the second clause

of 𝑓, we know 𝑎 ≤ min{𝑏 ∣ 𝑔(𝑠′)(𝑏) ≠ 0}. But since
elmts(𝑓𝑔(𝑠′)(𝑠′)) = 𝑔(𝑠′), and thus (and by Lemma A.2),
min{𝑎0, … , 𝑎𝑛−1} = min{𝑏 ∣ 𝑔(𝑠′)(𝑏) ≠ 0}, we have
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𝑎 ≤ min{𝑎0, … , 𝑎𝑛−1}. Therefore, the application of cons is
well defined. �
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