Semantics of two-dimensional type theory

Benedikt Ahrens Paige Randall North Niels van der Weide

June 23, 2022

Higher dimensional type theory

- Martin-Löf's identity type gives types the structure of higher groupoids
- This led to the development of homotopy type theory (HoTT)
- **Synthetic algebraic topology**: done via HoTT
- Directed type theory: directed version of HoTT
- Directed topological spaces are used to study concurrency ¹, and directed type theory is conjectured to model such spaces.

¹Fajstrup, Lisbeth, et al. *Directed algebraic topology and concurrency*. Vol. 138. Berlin: Springer, 2016.

2-Dimensional interpretations of type theory

There are many interpretations of type theory that are 2-dimensional in a certain sense

- ► The groupoid interpretation by Hofmann and Streicher ²
- ▶ The two-dimensional models by Garner³

Interpreted in something like groupoids

²Hofmann, Martin, and Streicher, Thomas. "The groupoid interpretation of type theory." *Twenty-five years of constructive type theory (Venice, 1995)* 36 (1998): 83-111.

³Garner, Richard. "Two-dimensional models of type theory." *Mathematical structures in computer science* 19.4 (2009): 687-736.

Directed type theory

But directed variants have also been considered

- An interpretation with directed definitional equality⁴
- A syntactical framework for directed type theory⁵
- An interpretation with directed identity types⁶

Interpreted in something like categories

⁴Licata, Daniel R., and Harper, Robert. "2-dimensional directed type theory." *Electronic Notes in Theoretical Computer Science* 276 (2011): 263-289.

⁵Nuyts, Andreas. Towards a directed homotopy type theory based on 4 kinds of variance. Master's thesis, KU Leuven, 2015.

⁶North, Paige Randall. "Towards a directed homotopy type theory." *Electronic Notes in Theoretical Computer Science* 347 (2019): 223-239.

A framework is missing

Problem:

- Garner gave a general notion of 2-dimensional comprehension category, but this only works for **undirected** type theory
- The interpretations of directed type theory are ad hoc

Goal of this talk:

find categorical framework in which one can interpret various flavors of 2-dimensional type theory

The work in this talk has been formalized using UniMath.

- Use bicategories instead of categories
- Define comprehension bicategories.
- ▶ For that, we need a bicategorical notion of fibration^{7 8}
- Find suitable instances of comprehension bicategories

⁷Hermida, Claudio. "Some properties of Fib as a fibred 2-category." *Journal of Pure and Applied Algebra* 134.1 (1999): 83-109.

⁸Buckley, Mitchell. "Fibred 2-categories and bicategories." *Journal of Pure and Applied Algebra* 218.6 (2014): 1034-1074.

Comprehension categories

Type theory can be interpreted in **comprehension categories**. Definition

A comprehension category is a strictly commuting triangle

where ${\it F}$ is a Grothendieck fibration and where χ preserves cartesian cells.

Fibrations of bicategories

The notion of fibration of bicategories has a **global** and a **local** condition.

Fibrations of bicategories

The notion of fibration of bicategories has a **global** and a **local** condition.

Global condition:

Given a substitution $s : \Gamma_1 \to \Gamma_2$ and type A in context Γ_2 , we get a type A[s] in context Γ_1 . This is substitution on types.

Fibrations of bicategories

The notion of fibration of bicategories has a **global** and a **local** condition.

Global condition:

Given a substitution $s : \Gamma_1 \to \Gamma_2$ and type A in context Γ_2 , we get a type A[s] in context Γ_1 . This is substitution on types.

Local condition:

Given a 2-cell $\tau : s_1 \Rightarrow s_2$ where $s_1, s_2 : \Gamma_1 \rightarrow \Gamma_2$, and a term $t : A[s_1]$, we get a term of type $A[s_2]$. (think of 2-cells $\tau : s_1 \Rightarrow s_2$ as reductions from s_1 to s_2)

Comprehension bicategories

A comprehension bicategory is a strictly commuting triangle

where χ preserves cartesian cells and where F is a global fibration and a local opfibration.

Examples of comprehension bicategories

Given a locally groupoidal bicategory $\ensuremath{\mathcal{B}}$ with pullbacks, take

Examples of comprehension bicategories

Given a locally groupoidal bicategory $\ensuremath{\mathcal{B}}$ with pullbacks, take

This does **not** work for arbitrary bicategories.

Examples of comprehension bicategories

We have the following comprehension bicategory

This can be generalized to arbitrary bicategories by using **internal Street (op)fibrations**.

Conclusion

We defined a notion of comprehension bicategory

- This is a suitable framework in which one can interpret (directed) type theory: we proved soundness
- There are general instances of this definition (internal Street fibrations)
- ▶ More details can be found in the paper ⁹.

Further work: look at type formers, completeness

⁹Ahrens, Benedikt, North, Paige Randall, and Weide, Niels van der. "Semantics for two-dimensional type theory." *Accepted to LICS2022*