Enriched Categories in Univalent Foundations

Niels van der Weide

12 June, 2023

Univalent Foundations

- **Key aspect of univalent foundations**: the univalent axiom
- The univalence axiom: isomorphism of types is the same as equality of types
- The foundations of libraries like UniMath¹.

¹https://github.com/UniMath/UniMath

Category Theory in Univalent Foundations

- In univalent foundations, we are interested in univalent categories
- These are categories in which isomorphism between objects is the same as equality between them (*compare to the univalence axiom*)
- Semantically, this is the "right" notion.
- In addition, it is more convenient to work with univalent categories.

Overall Goal

This talk from a broader perspective:

- Develop category theory in univalent foundations
- Formalize it in a proof assistant
- Ultimately: also formalize applications of category theory (i.e., in logic or programming language theory)

What are enriched categories?

- Category: we have objects and between objects, we have a set of morphisms
- **Enriched category**: we take the previous definition, but

What are enriched categories?

- Category: we have objects and between objects, we have a set of morphisms
- Enriched category: we take the previous definition, but what if we replace set by partial order, abelian group, dcpo, or an object of an arbitrary monoidal category?
- $\ensuremath{\textbf{So}}$: enriched categories are categories whose homsets are endowed with extra structure

Motivation

Applications in mathematics:

- Simplicial homotopy theory ²
- Strict n-categories can be defined using enriched categories
- Homological algebra ³

Applications in computer science:

- Domain equations in categories ⁴
- Models for the computational λ -calculus ⁵
- Models for typed PCF with general recursion ⁶
- Enriched effect calculus ⁷

²Goerss, Paul G., and John F. Jardine. Simplicial homotopy theory. ³Weibel, Charles A. An introduction to homological algebra. ⁴Wand, Mitchell. "Fixed-point constructions in order-enriched categories." ⁵Power, John. "Models for the computational λ-calculus." ⁶Plotkin, Gordon, and John Power. "Adequacy for algebraic effects." ⁷Egger, Jeff, Rasmus Ejlers Møgelberg, and Alex Simpson. "The enriched effect calculus: syntax and semantics."

Goal of This Talk

- As promised by the abstract, I will tell you all something about enriched categories in univalent foundations.
- More specifically, we discuss what a univalent enriched category should be
- The theorems/definitions in this talk are formalized in UniMath⁸.

⁸https://github.com/UniMath/UniMath

Suppose that we have a monoidal category \mathcal{V} . Usually, enriched categories consist of the following

- A type O of objects
- For all x, y : O an hom-object H(x, y) : V
- such that we have identity morphisms and compositions

We also require the usual laws to hold (associativity, neutrality)

We deviate slightly from the usual notion in the literature

- We make use of **enrichments**
- Idea: enriched categories are to groups as enrichments are to group structures.

Enrichments: Why

We deviate slightly from the usual notion in the literature

- ► We make use of **enrichments**
- Idea: enriched categories are to groups as enrichments are to group structures.
- This allows for some more reusability.
- In addition, it simplifies some proofs (*structure identity* principle)

Enrichments: Definition

Suppose that we have

 \blacktriangleright A monoidal category ${\cal V}$ with unit 1 and tensor \otimes

Definition

A $\mathcal V\text{-}enrichment$ E of a category C consists of

▶ a function $E(-,-): C \to C \to V$;

Enrichments: Definition

Suppose that we have

 \blacktriangleright A monoidal category ${\cal V}$ with unit 1 and tensor \otimes

Definition

- A \mathcal{V} -enrichment E of a category C consists of
 - ▶ a function $E(-,-): C \to C \to V$;
 - for x : C a morphism Id : $\mathbb{1} \to E(x, x)$ in \mathcal{V} ;
 - for x, y, z : C a morphism Comp : E(y, z) ⊗ E(x, y) → E(y, z) in V;

Enrichments: Definition

Suppose that we have

 \blacktriangleright A monoidal category ${\cal V}$ with unit 1 and tensor \otimes

Definition

- A \mathcal{V} -enrichment E of a category C consists of
 - ▶ a function $E(-,-): C \to C \to V$;
 - for x : C a morphism Id : $\mathbb{1} \to E(x, x)$ in \mathcal{V} ;
 - for x, y, z : C a morphism Comp : E(y, z) ⊗ E(x, y) → E(y, z) in V;
 - ▶ functions FromArr : $C(x, y) \rightarrow V(1, E(x, y))$ and ToArr : $V(1, E(x, y)) \rightarrow C(x, y)$ for all x, y : C

We require the usual axioms and that FromArr and ToArr are inverses.

Univalent Enriched Categories

A univalent \mathcal{V} -enriched category is a univalent category together with a \mathcal{V} -enrichment.

Univalent Enriched Categories

A univalent \mathcal{V} -enriched category is a univalent category together with a \mathcal{V} -enrichment.

Comments:

- One might wonder: should univalence interact with enrichment?
- For example, for bicategories we have a local and a global univalence condition.
- However, bicategories are instances of weak enrichments (over bicategories).
- We look at a stricter notion, namely enrichments over monoidal categories.

A Structure Identity Principle

- In univalent foundations, we are often interested in structure identity principles
- Such a principle says that equivalent structures are equal

A Structure Identity Principle

- In univalent foundations, we are often interested in structure identity principles
- Such a principle says that equivalent structures are equal
- For enriched categories, this principle basically says: two univalent enriched categories are equal if we have an equivalence between them
- A more precise statement would say that the type of equalities between enriched categories is the same as the type of adjoint equivalences between them

A Structure Identity Principle

- In univalent foundations, we are often interested in structure identity principles
- Such a principle says that equivalent structures are equal
- For enriched categories, this principle basically says: two univalent enriched categories are equal if we have an equivalence between them
- A more precise statement would say that the type of equalities between enriched categories is the same as the type of adjoint equivalences between them
- We formalized this statement.
- Our main method: univalent bicategories

What's included in the formalization so far

- The univalent bicategory of univalent enriched categories
- Limits and colimits in enriched categories
- Enriched monads, and a construction of Eilenberg-Moore objects in the bicategory of enriched categories
- Various examples: self-enriched categories, change of base, the opposite
- Models of the enriched effect calculus and a couple of examples
- Characterization of enrichments over structured sets

What's included in the formalization so far

- The univalent bicategory of univalent enriched categories
- Limits and colimits in enriched categories
- Enriched monads, and a construction of Eilenberg-Moore objects in the bicategory of enriched categories
- Various examples: self-enriched categories, change of base, the opposite
- Models of the enriched effect calculus and a couple of examples
- Characterization of enrichments over structured sets (in the literature, often simplified definitions of enriched categories are used (eg for posets/abelian groups). We define a general notion of structured set and we characterize enrichments over structured sets via a similar simplified definition)

Conclusion

Main take-aways of this talk:

- Enriched categories are nice and useful
- Univalence for enriched categories: the underlying category is univalent
- We showed: the bicategory of univalent enriched categories is again univalent
- Some interesting peculiarities happen with univalent enriched categories (change of base)