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ABSTRACT. We discuss two results: one by Dugger and one by Beke. Dugger’s result
states that all combinatorial model categories can be written as a Bousfield localization
of a simplicial presheaf category. The site of that category gives the generators and
the localized maps are the relations, so more intuitively this says that all combinatorial
model categories can be built from generators and relations. The second result by
Beke gives a general way on how to find model structures on structured sheaves. If all
required definitions can be given in a certain logical syntax, then to verify the axioms
for all structured sheaves, we only need to check it for sets. This gives an easy way to
find the Joyal model structure for simplicial objects in a topos.
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CHAPTER 1

Introduction

Sheaves are one of the main tools in geometry as they allow us to capture local data.
For example, using sheaves one can define manifolds, algebraic varieties, schemes and
so on. Manifolds are not just topological spaces, but they also have structure which
gives the smooth functions. The same thing holds for algebraic variaties, but they have
a structure giving the regular functions. These functions can be restricted to a smaller
part, and restrictions of smooth functions are smooth. On the other hand, we can glue
these functions. If we start with a collection of functions fα on Uα which agree on
the intersections Uα ∩ Uβ , then we can give a unique f on

⋃

α Uα which is fα on Uα.
This precisely says that the extra structure is given by a sheaf, so these objects can be
considered as spaces together with a sheaf.

Using such structures we can define more robust operations, and this way we can
work more easily with them. As example one could consider the homotopy groups of
manifolds, varieties or schemes. The obvious way to define them is by considering them
as a topological space for which homotopy groups are defined. However, this does not
take the extra structure we have in account, and in practice this does not always give
robust techniques. For schemes this method does not give nice results which is why we
need different techniques to define homotopy groups of these objects.

One way to do this is by using model structures. These allow us to define homo-
topy theories on objects other than topological spaces. We start with objects, which
can be seen as generalized spaces, and arrows, which represent the continuous maps
between them. Normally for homotopy groups we look at how we can map spheres
into objects up to homotopy. However, in general we might not have an obvious choice
for the sphere in our generalized spaces, so this method does not work. Instead we use
more algebraic topology and the structure is given by three classes of maps. Fibrations,
cofibrations and weak equivalences are the main tools in algebraic topology, and these
can be used to define homotopy groups. To define a model structure, one needs to
say which maps are fibrations, cofibrations and weak equivalences, and these need to
satisfy some properties. This definition is more abstract and less obvious, but it gives
many more examples.

Model structures have had many applications. Quillen introduced model categories
to define simplicial homotopy theory for simplicial sets [Qui67], and using the general
theory he was able to compare simplicial sets and topological spaces. But the applica-
tions of model categories reach much further: it can be applied in algebraic geometry,
but also in pure algebra. On the one hand, in homological algebra one of the main
techniques is working with resolutions and derived functors. With model categories
one can describe these constructions in a general setting which is why the study of
model categories is sometimes called homotopical algebra. On the other hand, recently
Morel and Vovoedsky defined the notion of A1-homotopy theory on schemes [MV99].
This allowed them to prove the Milnor and the Bloch-Kato conjectures in algebraic
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2 1. INTRODUCTION

geometry. More recently, this started the development of derived algebraic geometry
[TV05, TV04, Lur04].

Our first goal is to prove an interesting property of model structures that states
that most model categories can be built from generators and relations. This is similar
to the structure theorem of finitely generated abelian groups which states that every
finitely generated abelian group is isomorphic to

⊕n
i=1Z ⊕

⊕m
i=1Z/piZ for some n,

m and primes pi . However, unlike abelian groups this property does not hold for all
model categories, but only for those which are combinatorial. Most examples of model
categories which occur in practice, are indeed combinatorial, so the requirement is
not strict. Also, for model categories it is more difficult to state that they are built
with generators and relations, and that requires some set-up. First of all, we need
to find ‘the free model categories with certain generators’. This basically imitates the
presheaf category SetsC

op
. The second ingredient is adding relations for which we need

a technique called Bousfield localization. Combining these two techniques we can state
that every combinatorial model category is built from generators and relations which
is precisely Dugger’s theorem [Dug01c, Dug01a].

Our second goal is about finding a model structure on categories of sheaves, and
the formulation requires more set-up. In many examples we are not just looking at
sheaves, but rather at structured sheaves. For example, smooth functions can be added,
subtracted and multiplied, so the smooth functions on a manifold form a ring. Instead
of looking at sheaves, we look at sheaves with a certain structure like sheaves of rings,
sheaves of abelian groups or simplicial sheaves. A sheaf of abelian groups is defined
similarly as a sheaf of rings, and a simplicial sheaf is a sheaf where the functions on
every open subset form a simplicial set. Our goal is to find techniques which can be
used to find a model structure on the category of structured sheaves. However, this is
quite complicated at first, because sheaves can be defined on all kinds of spaces, even
on the complicated ones. To solve this, we want to reduce this problem somehow to
sheaves on simpler spaces for which it will be easier.

Let us clarify the approach using the example of simplicial sheaves. If we look
at simplicial object in sets, then we see that those are precisely the simplicial sets,
in which case we have a model structure. Somehow we would like to transfer this
definition from simplicial sets to sheaves. The first thing to notice is that we can write
the relevant definitions in such a way that they also make sense for simplicial sheaves.
So, we have the required notions at hand, but do they satisfy the right properties? The
answer is yes, and the main tool to show this is Boolean localization. However, for it
to work, we need some technical requirement on the definitions, because they have to
be ‘easy’ in a certain sense. Using all this we can state and prove the main theorems of
[Bek00, Bek01].

Now we give an outline of this thesis which is divided in two parts. In each part
we study one of the goals. In Chapter 2 we study the basic theory of model categories
and locally presentable categories. The notion of ‘locally presentable’ is crucial in the
theory of model categories, because for these categories we are able to find model
structures. Next we look at examples of model categories and the more advanced theory
in Chapter 3. We start with two techniques to find model structures, namely Quillen’s
small object argument and transfer. This already gives a wide variety of examples, and
it is crucial for the theory as well. Here we also discuss the more advanced notions like
Bousfield localization and homotopy colimits. Now we have sufficient techniques for
Chapter 4 where we prove that certain model categories can be built from generators
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and relations. This is the first goal of our thesis, and after that we enter the second
part.

In the second part we give a general way to find model structures on categories
of structured sheaves. For this we need to start with some topos theory in Chapter 5.
Here we discuss the notions of a sheaf and topos, and we look at Boolean localization.
Also, we lay the foundations of interpreting logic in toposes which is the main topic of
Chapter 6. There we discuss how we can interpret logical sentences in toposes. Another
topic of Chapter 6 are sketches which is another logical language. Lastly, we give the
precise theorem and prove it in Chapter 7.





Part 1

Abstract Homotopy Theory





CHAPTER 2

Basic Notions

2.1. Model Categories

A valuable tool of abstract homotopy theory is the notion of a model category. In
general topology homotopy groups are defined just for topological spaces, but not for
objects like schemes or simplicial sets. To define homotopy for such objects, we need
a structure which generalizes homotopy theory in a certain way. Important notions of
homotopy theory are fibrations, cofibrations and weak equivalences which are certain
subclasses of the continuous maps. In algebraic topology weak equivalences are maps
which induce isomorphisms on all homotopy groups for all possible base points. A
weak equivalence does not have to be a homeomorphism, because it might not have
an continuous inverse. Fibrations and cofibrations are certain nice maps which give us
important computational tools like the Long Exact Sequence. A model category uses
fibrations, cofbrations and weak equivalences as the elementary notion rather than
spaces or maps from spheres to the given space. In the following definition we use
the notation Mor(M ) for the category of morphisms of M . The objects are arrows
f : X → Y and a morphism from f : X → Y to g : X ′→ Y ′ is a commutative square of
the form

X

f

��

// X ′

g
��

Y // Y ′

Now we define

Definition 2.1.1 (Model Category). LetM be a category with subclasses Fib, Cof and
We of arrows. Then (M , We, Fib, Cof) is a model category iff the following axioms are
satisfied

(M1) The categoryM has all finite limits and small colimits.
(M2) Let f and g be composable morphisms. If two of f , g and g ◦ f are in We,

then so is the the third. This is called the 2-out-of-3 property.
(M3) The classes Fib, Cof and We are closed under retracts.
(M4) Suppose that we have the following diagram

A
f
//

i
��

B

p

��

C g
// D

where i ∈ Cof and p ∈ Fib. If either i or p is in We, then there is a lift C h //B
in the diagram such that f = h ◦ i and g = p ◦ h.

7



8 2. BASIC NOTIONS

(M5) We have functors α,β ,γ,δ : Mor(M ) → Mor(M ) such that f = β( f ) ◦
α( f ) = δ( f ) ◦ γ( f ). These functors must have the property that for every
arrow f : A→ B, we have α( f ) ∈ Cof, β( f ) ∈ Fib∩We, γ( f ) ∈ Cof∩We, and
δ( f ) ∈ Fib.

Maps in We, Fib, Cof are called weak equivalences, fibrations, cofibrations respectively.
Also, maps in Fib∩We are called trivial fibrations and maps in Cof∩We are called trivial
cofibrations.

Axioms (M1) to (M3) are easy to check in many examples. Also, often it is the
case that one of Fib and Cof is defined as the class of maps which already has one of
the desired lifting properties. If we then can prove that the factorization axiom holds
as well, then the other lifting axiom will follow, and this will be made more precise in
Chapter 3. However, often it is difficult to check whether factorizations can be made,
and the main techniques in Chapter 3 will help us showing this property. The fifth axiom
is taken from [Hov07], and originally in [Qui67] the factorizations were not required
to be functorial. However, in most examples the factorization is indeed functorial, and
it is a nice property for the theory.

Since model categories are finitely complete and cocomplete, they have a terminal
object 1 and an initial object 0. Hence, for objects X we have arrows X → 1 and
0→ X . Two objects X and Y are called weakly equivalent iff there is a zig-zag of weak
equivalences between them . This means that we can find objects Z1, . . . , Zn with Z1 = X
and Zn = Y , and weak equivalences fi for i ∈ {1, . . . , n− 1} with either fi : Zi → Zi+1
or fi : Zi+1 → Zi . An object is called fibrant iff X → 1 is a fibration, and it is called
cofibrant iff 0 → X is a cofibration . Not all objects have to be fibrant, but they are
always weakly equivalent to fibrant objects. This is because we can make the following
factorization

X // ∼ //X Fib // //1.

So X is equivalent to X Fib and the map from X Fib to 1 is a fibration, and thus X is
equivalent to a fibrant object. Because the factorization is assumed to be functorial, we
get a functor −Fib :M →M which gives a fibrant replacement . For arrows f : X → Y
we get the square

X // ∼ //

f

��

X Fib // //

f Fib

��

1

Id

��

Y // ∼ // Y Fib // // 1

Similarly, we can find for each object a cofibrant replacement −Cof .
As is standard in Category Theory, whenever we define a certain class of objects,

we should define their arrows as well. The notion of arrow between model categories
is the notion of a Quillen Functor.

Definition 2.1.2 (Quillen Functor). Let M and N be model categories, and let an
adjunction L a R be given. Then we call this adjunction a Quillen adjunction iff L
preserves cofibrations and trivial cofibrations. In this case we call L a left Quillen functor
or just a Quillen functor. The right adjoint R is called a right Quillen functor.

A Quillen equivalence is defined as a Quillen functor L a R such that for all cofibrant
X and fibrant Y a map L(X )→ Y is a weak equivalence iff its transpose X → R(Y ) is
a weak equivalence, and two model categoriesM and N are called Quillen equivalent



2.1. MODEL CATEGORIES 9

iff we have a Quillen equivalence between them. Note that Quillen equivalent model
categories might not be equivalent as categories.

Proposition 2.1.3. Let L a R be a Quillen adjunction. Then L is a Quillen equivalence iff

for all cofibrant X and fibrant Y the composites X
ηX //R(L(X )) //R([L(X )]Fib) and

L([R(Y )]Cof) // L(R(Y ))
εY //Y are weak equivalences.

PROOF. Let us assume that L is a Quillen equivalence, and let some factoriza-

tion L(X ) i //[L(X )]Fib //1 of L(X ) → 1 into a trivial cofibration followed by

a fibration be given. The arrow X
ηX //R(L(X ))

R(i)
//R([L(X )]Fib) is the transpose

of the arrow i. Since i is a weak equivalence, this arrow is a weak equivalence as
well, because L was assumed to be a Quillen equivalence. Factoring 0 → Y into

0 //[R(Y )]Cof p
//R(Y ) into a cofibration followed by a trivial fibration, we can

say that L([R(Y )]Cof)
L(p)

// L(R(Y ))
εY //Y is the transpose of the weak equivalence

p. Hence, both arrows are weak equivalences.

Next we assume that both the composites X
ηX //R(L(X )) //R([L(X )]Fib) and

L([R(X )]Cof) // L(R(Y ))
εY //Y are weak equivalences for cofibrant X and fibrant

Y . To show that L is a Quillen equivalence, we first take a weak equivalence f : L(X )→
Y where X is cofibrant and Y is fibrant. Our goal is to show that g : X → R(Y ) is a
weak equivalence as well. Next we take a fibrant replacement [L(X )]Fib and since the
factorizations are functorial, we have a map [L(X )]Fib → Y , because Y is a fibrant
replacement of Y . This gives a square

L(X ) ∼ //

∼

��

[L(X )]Fib

��

Y ∼
// Y Fib

By the 2-out-of-3 property the map [L(X )]Fib→ Y is a weak equivalence. Now we look
at the following diagram

X

g
""

ηX // R(L(X ))

R( f )
��

// R([L(X )]Fib)

xx

R(Y )

The arrow X → R([L(X )]Fib) is a weak equivalence by assumption, and the arrow
R([L(X )]Fib) → R(Y ) is a weak equivalence, because Quillen functors preserve weak
equivalences between fibrant objects. Hence, X → R(Y ) is a weak equivalence.

To show that L(X )→ Y is a weak equivalence if X → R(Y ) is one, can be done in
a similar way. �

Now we discuss some examples of model categories. At this moment we do not
have sufficiently many techniques to prove that they are indeed model categories, but
nevertheless it is enlightening. In Chapter 3 we discuss Quillen’s Small Object Argument
which allows us to prove that such structures are indeed model structures. However, in
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that chapter we will not give the proof for these examples, but rather for two different
examples.

Example 2.1.4 (Simplicial Sets). An important example of a model category is given by
the category SSet of simplicial sets. Recall that a simplicial set is defined as a presheaf
on∆op, and that Top is the category of topological spaces with continuous maps. In Top
we have an object∆n, called the standard n-simplex, which is defined as the subspace of
Rn+1 consisting of convex combinations of the standard basis vectors. Also, recall that
we have a realization functor | · | : SSet→ Top which is left adjoint to Sing which sends
a topological space X to the simplicial set Xn = Top(∆n, X ). A weak equivalence of
simplicial sets is a map f : X → Y such that | f | : |X | → |Y | induces an isomorphism on
all homotopy groups. Cofibrations are defined to be the monomorphisms, and fibrations
are the maps p : X → Y which have the right lifting property with respect to all horn
inclusions Λi[n]→ ∆[n]. This forms a model structure on SSet which can be proven
using the techniques of Chapter 3.

Fibrant simplicial sets are called Kan complexes, and all simplicial sets are cofibrant.
With these notions we can define homotopy groups of a certain class of simplicial sets.
The definitions actually work for all simplicial sets, but we need it to be a Kan complex
to make it into a group. The n-th homotopy groupπn(X ) at basepoint x :∆[0]→ X of a
simplicial set X is defined to be the collection of all maps∆[n]→ X mapping ∂∆[n] to
x up to homotopy where we say that two maps α,β :∆[n]→ X are homotopic iff there
exists a map H :∆[n]×∆[1]→ X such that the following two diagrams commute:

∆[n]
i0 //

α

&&

∆[n]×∆[1]

H
��

∆[n]
i1oo

β
xx

X

∂∆[n]×∆[1] //

��

∆[0]

x

��

∆[n]×∆[1]
H
// X

We have two degeneracies d0, d1 :∆[n]→∆[1], and the inclusion i0 and i1 are on the
first coordinate the identity and on the second coordinate d0 and d1 respectively. In a
diagram ik is defined for k ∈ {1, 2} as

∆[n]
Id

xx

dk

&&

ik
��

∆[n] ∆[n]×∆[1] //oo ∆[1]

One can prove that a map f : X → Y between Kan complexes is a weak equivalence iff
it induces an isomorphism on all homotopy groups.

Simplicial sets are a replacement of topological spaces in abstract homotopy theory.
Unlike topological spaces simplicial sets can be described in a combinatorial way, and
the category SSet is cartesian closed. A simplicial set can capture all the homotopical
data of a topological space. To do so, we define the functor Sing sending a topological
space X to the simplicial set which is Top(∆n, X ) in degree n. This functor has a left
adjoint | · |, called the geometric realization. If one restricts oneself to the compactly
generated weakly Hausdorff topological spaces, then one can show these functors give a
Quillen equivalence. Hence, simplicial sets generalize topological spaces.

Another important application of simplicial sets is given by the nerve functor. Every
small category C gives a simplicial set N (C ) which in degree n consists of all strings
of n composable arrows in C . Again the simplicial set contains all the data of the
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category, and this tells us that simplicial sets also generalize categories. This way we
can use certain simplicial sets as model of categories which is a crucial idea in ∞-
category theory. Since∞-categories are not an important topic in this thesis, we will
not discuss it any further.

Example 2.1.5 (Chain Complexes). Another interesting model structure is the projec-
tive model structure on chain complexes. On the category Ch≥0(R) of non negatively
graded chain complexes of R-modules we define the weak equivalences to be the maps
which induce isomorphisms on all homology groups, and the fibrations are the maps
which are surjective in positive degrees. The cofibrations are the maps which are in-
jective and have a projective cokernel. Again to prove this is indeed a model structure
requires techniques from Chapter 3 and we will refer the reader for it to [DS95].

The cofibrant objects of this model structure are interesting. For a chain complex
C the map 0→ C is always injective, and the cokernel at degree n is Cn. Hence, it is
cofibrant iff C is projective in every degree. Using the language of model categories
we can thus talk about projective resolutions from homological algebra. If N is an
R-module, then we can consider the chain complex K(N , 0) which is N in degree 0
and 0 in all other degrees. Cofibrant replacements P of K(N , 0) thus correspond with
projective resolutions of N .

Example 2.1.4 shows up a lot in the theory, and Example 2.1.5 is useful, because
it can be used to show that homological algebra can be done using model categories.
Basically, model categories give a general way to talk about resolutions, and this gener-
alizes important constructions from homological algebra. Another useful construction
in homological algebra is given by derived functors. The functor Tor(−, B), which is the
left derived functor of −⊗ B, is defined on A by taking a projective resolution P, and
then take the homology of P⊗B. This is well-defined up to chain homotopy, and again
we can generalize this construction to arbitrary model categories.

However, this requires a small detour on the homotopy category. The homotopy
category is the localization of the model category with respect to the weak equivalences
which means that we added inverses to the weak equivalences in M . This basically
copies the definition of localization from commutative algebra. For a ring R and a
multiplicative closed subset S ⊆ R, the localization R/S satisfies a universal property,
namely that for ring homomorphisms R→ R′ which send all elements in S to invertible
elements, there is a unique extension R/S → R′. We will copy this definition for the
homotopy category, and then we say that all functors F : M → C can uniquely be
extended to the homotopy category if F sends weak equivalences to isomorphisms.

Definition 2.1.6 (Homotopy Category). LetM be a model category, and let Ho(M )
be a category with a functor γ : M → Ho(M ) which send weak equivalences to
isomorphisms. Then Ho(M ) is called a homotopy category of M iff for all functors
F :M →C which sends weak equivalences to isomorphisms, there must be a unique
functor G : Ho(M )→C such that G ◦ γ= F .

For model categories such homotopy categories can be constructed formally, and
for the details on the construction we refer the reader to [Hov07]. However, we can
construct a equivalent category which is nicer, and for that we imitate the construction
of the homotopy category of topological spaces. Here we have a concrete notion of
homotopy, and we look at the category whose objects are topological spaces and arrows
are homotopy classes of maps. In model categories we can also try to define a notion
of homotopy, and then do the same construction.
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However, the issue is that we that we have two ways of defining homotopies,
namely left and right homotopies. For left homotopies we need cylinder objects of
X which are a factorization of the codiagonal map ∇ : X

∐

X → X into a cofibration
followed by a weak equivalence. Note that we can always find cylinder objects C for
maps, because every map can be factored as a cofibration followed by a trivial fibra-
tion. A left homotopy from f : X → Y to g : X → Y is a cylinder object C with a map
H : C → Y such that the following diagram commutes

X
∐

X
〈 f ,g〉
//

��

Y

C

H

<<

We can dualize this construction. A path object is a factorization of the diagonal map
X → X × X into a weak equivalence followed by a fibration, and similarly we get the
notion of right homotopy. These notions of homotopy might not coincide for general
objects, but they do for objects which are both fibrant and cofibrant, and this gives an
equivalence relation. On the subcategory of objects which are both fibrant and cofi-
brant, we can do the same construction as for topological spaces, so the maps between
objects become homotopy classes of maps. This gives a category which we callMc f /∼.
The point is now thatMc f /∼ is equivalent to the homotopy category ofM .

Lastly, we give the notion of a left derived functor which generalizes the construction
of Tor(A, B).

Definition 2.1.7 (Left Derived Functor). Let L : M → N be a left Quillen functor.
Then the total left derived functor LL : Ho(M ) → Ho(N ) of L is defined to be on
objects X as L(X Cof) and on arrows as L( f Cof).

Since the factorization are functorial and assumed to be part of the structure, the
definition of LL makes sense. However, it remains to show this indeed induces a map
on the homotopy category, meaning that L sends weak equivalences between cofibrant
objects to weak equivalences. This is the case as we show in the following proposition.

Proposition 2.1.8. Let L be a left Quillen functor, and let X and Y be cofibrant. Suppose,
we have a weak equivalence f : X → Y . Then L( f ) is a weak equivalence.

PROOF. Let A and B be cofibrant objects with a weak equivalence f : A→ B, and
look at the coproduct A

∐

B which is the pushout of of the diagram

0 //

��

A

ιA

��
f

��

B
ιB //

Id
((

A
∐

B

g

!!
B

Factor g = p ◦ q with p a trivial fibration and q a cofibraiton. It is not difficult to
prove that the pushout of a cofibration is again a cofibration, so the maps ιA and ιB are
cofibrations. Since isomorphisms are weak equivalences and f is a weak equivalence,
the maps q◦ιA and q◦ιB are weak equivalences by the 2-out-of-3 property, so these maps
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are trivial cofibrations. We assumed L to be a left Quillen functor, so the map L(q ◦ ιA)
and L(q ◦ ιB) are weak equivalences. Now we can look at the following diagram

L(B)
L(q◦ιB) //

Id
((

L(C)

L(p)
��

L(A)
L(q◦ιA)oo

L( f )
vv

L(B)

The maps L(Id ) and L(q ◦ ιB) are weak equivalences, so L(p) is a weak equivalence by
the 2-out-of-3 property. From the 2-out-of-3 property we can now conclude that L( f )
is a weak equivalence, because L(p) and L(q ◦ ιA) are. �

One can describe the theory as well by looking at right Quillen functors. A right
Quillen functor is a right adjoint which preserves fibrations and trivial fibrations, and
this notion coincides with the one given in Definition 2.1.2. Dually to Proposition 2.1.8
one can prove that these functors preserve weak equivalences between fibrant objects.

2.2. Accessible and Locally Presentable Categories

In this section we discuss two kinds of categories, namely locally presentable and
accessible categories. Later, in Chapter 5, we will see an important example of such cat-
egories, namely toposes. Their definitions are rather technical and require some setup.
Basically, it says that all objects in the category can be constructed from certain small
objects. Cardinality, or smallness, is not a categorical notion, but it can be described in
a categorical way. If we have a set of cardinality λ, and we map it to a disjoint union of
more than λ sets, then this map factors through some subset of it which is the disjoint
union of at most λ of these sets. This can be generalized in a categorical way, because
we can replace the disjoint union by a colimit. In the end of this section we give two
characterizations of these notions which are similar to Giraud’s theorem, and these are
more intuitive.

To discuss the notion of smallness of object, we need to recall the definition of
λ-directed partial orders where λ is a regular cardinal. If I is a partial order such that
every subset of I with cardinality strictly less than λ has an upper bound, then I is
called λ-directed. A λ-directed colimit is a colimit over a λ-directed partial order.

Definition 2.2.1 (Smallness). Let C be a category, and let C be an object of C . For a
regular cardinal λ we say that C is λ-small iff for every λ-directed partial order I and
diagram F : I →C

Hom(C , colimi∈I F(i))∼= colimi∈I Hom(C , F(i)).

This means that every map from C to a directed colimit factors through some ob-
ject. To see that this definition generalizes the notion of cardinality of objects, let us
discuss some examples. Every finite set {x1, . . . , xn} is ω-small. If we map it into a
colimit colim j∈I F(i), then every x i gets mapped into some F(ki). This gives a finite set
of objects {F(k1), . . . F(kn)}, and note that {k1, . . . kn} has an upper bound k. Hence,
the map from {x1, . . . , xn} to colim j∈I F(i) factors through F(k), and this gives the de-
sired bijection. More generally, sets of cardinality λ are λ-small which can be proven
by exactly the same argument. Another example of small objects are the representable
functors. Since yC(C ′) is defined as Hom(C ′, C) and because the Hom functor is cocon-
tinuous, it commutes with the required colimits, and thus yC is ω-small.
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Note that countable sets are not ω-small. For example, if we have the diagram
i 7→ {0, . . . , i} from the partial order ω into Sets, then the colimit is ω. However, the
identity map on ω does not factor through some {0, . . . , i}, and thus ω is not ω-small.
From this we can conclude that it does not hold that whenever λ′ < λ and C is λ-
small, then C must be λ′-small as well. In contrast the opposite does hold: if λ < λ′

and C is λ-small, then C is λ′-small. Countable sets are for example ω1-small, and we
can use precisely the same argument as before to show this. If λ′ > λ, then every λ′-
directed partial order is λ-directed as well, because the condition of being λ′-directed
is stronger. Given a λ-small object C and a diagram F over a λ′-directed partial order,
then Hom(C , colimi∈I F(i)) ∼= colimi∈I Hom(C , F(i)) holds, because the diagram is λ-
directed as well. The converse does not hold, because if λ < λ′ and I is λ-directed,
then it might not be λ′-directed.

Next we show that a λ-small colimit of λ-small objects is again a λ-small object.
Let I be λ-small and let J be λ-directed partial orders, and suppose we have diagrams
F : I →C and G : J →C such that every F(i) is λ-small. Then we have the following
chain of isomorphisms

Hom(colimi∈I C(i), colim j∈J F( j))∼= lim
i∈I

Hom(C(i), colim j∈J F( j))

∼= lim
i∈I

colim j∈J Hom(C(i), F( j))

∼= colim j∈J lim
i∈I

Hom(C(i), F( j))

∼= colim j∈J Hom(colimi∈I C(i), F( j))

By definition of the colimit we have the first isomorphism. Since every C(i) is λ-small,
we can pull the colimit out of the Hom functor as well. Next we notice that we can
interchange λ-small limits and λ-directed colimits in Sets. Lastly, we pull the colimit
back in to get the desired result. Now we conclude that λ-small colimits of λ-small
objects are indeed λ-small.

The following proposition is useful, and a direct consequence of the previous state-
ment. If we can write C as a colimit of λ-small objects, then we can make the colimit
directed in such a way that all objects stay λ-small. The problem is that upper bounds
might be missing, but to solve that we add them.

Proposition 2.2.2. Let λ be a regular cardinal and let C be a category which has all
colimits over sets of size at most λ. If we can write C as a colimit of λ-small objects, then
we can write C as a λ-directed colimit of λ-small objects.

PROOF. By assumption we can write C as colimI F where F(i) is λ-small for all i.
Define a subcategory D containing the diagram F and all colimits over sets of size at
most λ. Note that D consists only of λ-small objects and that D is λ-directed, because
we added the upper bounds. Every cocone on D is one over F as well, because in D we
have more objects and arrows. If we have a cocone D over F , then we get one over D,
because we get arrows from the colimits to D by the universal property of the colimit.
Hence, the category of cocones over D and over F are isomorphic, and thus the colimit
of D is C as well. �

Now we have developed some techniques to work with small objects and their
colimits, and next we introduce the notion of accessibility. This says that certain small
objects generate the category using λ-directed colimits. As a technicality we require
that all λ-directed colimits exist.
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Definition 2.2.3 (Accessible). Let λ be a regular cardinal. A category C is called λ-
accessible iff the following two conditions hold

(1) C has all λ-directed colimits;
(2) There is a set S of λ-small objects such that every object in C is a λ-directed

colimit of S.

A category is called accessible if it is λ-accessible for some λ.

If C is λ-accessible and λ < λ′, then C might not be λ′-accessible, because it
might not have the required colimits. At the moment it still requires some work to
check whether a category is accessible or not, but later we shall see some ways to
check it more easily. To get a feeling for this notion we shall do some examples by hand

Example 2.2.4 (Presheaves). The category of presheaves on some small category C is
accessible. Since SetsC

op
is cocomplete, the first condition is satisfied. The representa-

bles are ω-small, and note that every presheaf F is isomorphic to colimC op ↓ F . Using
Proposition 2.2.2 we see that every presheaf F is an ω-directed colimit of representa-
bles, and thus the category SetsC

op
is ω-accessible.

Example 2.2.5 (Abelian Groups). Since Ab has a colimits, the first condition of acces-
sibility holds. From algebra we know that every abelian group can be written as colimit
of its finitely generated subgroups, and thus we claim that precisely these groups are
the generators. If we map Zr ⊕

⊕n
i=1Z/piZ into colimi∈I Ai , then we look at what

happens to every generator x i . Each of these generator gets mapped to some Aki
, and

by taking their upper bound, we see that this map factors uniquely through some Ak.
Therefore, finitely presentable abelian groups are indeedω-small. Now we again apply
Proposition 2.2.2 to conclude that Ab is ω-accessible.

Example 2.2.6 (Chain Complexes). Since Ab is locally presentable, it easily follows
that Ch≥0(Ab) is ω-accessible as well. The generators can be taken as the chain com-
plexes which are finitely generated in one degree and zero in all the other degrees. Us-
ing a similar argument we can show that these chain complexes areω-small, and since
every chain complex is the colimit of the described generators, it follows by Proposi-
tion 2.2.2 that Ch≥0 Ab is ω-accessible.

The next notion we consider is local presentability. This is slightly stronger than
accessibility, but still we can find many examples of locally presentable categories.

Definition 2.2.7 (Locally Presentable). A categoryC is called locally λ-presentable iff it
is λ-accessible and cocomplete, and it is locally presentable iff it is locally λ-presentable
for some ordinal λ.

The only difference between locally presentable categories and accessible cate-
gories is thus that locally presentable categories must have all colimits instead of λ-
filtered colimits for some cardinal number. For this reason we have for all locally λ-
presentable categories C and λ′ > λ that C is locally λ′-presentable as well. Since
presheaf toposes are cocomplete, it follows that they are locally presentable by Exam-
ple 2.2.4. The category of simplicial sets Sets∆

op
is therefore locally presentable as well.

For the same reasons, the category of abelian groups and chain complexes are locally
presentable.

Theorem 2.2.8. Let λ be a regular cardinal. Then the following two statements are
equivalent for categories C
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(1) C is locally λ-presentable;
(2) C is equivalent to a full reflective subcategory of SetsA

op
which is closed under

λ-filtered colimits, for some small categoryA .

PROOF. Suppose that C is equivalent to a full reflective subcategory of SetsA
op

closed under λ-filtered colimits. This means that we have an adjunction a a i for
which we have a(i(F)) ∼= F where i : C → SetsA

op
. First, we show that C is cocom-

plete. Let D : I → C be a diagram in C , and note that we have an induced diagram

I D //C i //SetsA
op

. This diagram has a colimit C , and we claim that the colimit
of D is a(C). Since Hom(a(C), X ) is isomorphic to Hom(C , i(X )) by adjunction, a(C) is
indeed the colimit of the diagram.

Next we assume that C is locally λ-presentable, and we write Cλ for the full sub-
category of generators. Note that Cλ is small, and that we have a diagram

Cλ

��

// SetsC
op
λ

C

By Kan extension we get an adjunction a a i where i :C → SetsC
op
λ , and now we need to

show a(i(C))∼= C . If we write C as colim Di where Di is λ-small, then i(C)∼= colim yDi
.

Next we can compute a(i(C)) as follows

a(i(C)) = colimY (U)→i(C) U = colimU→C U ∼= C

because C is the colimit of λ small objects. �

Next we show that functor categories C D are locally presentable if C is locally
presentable and D is small for which we use this theorem.

Example 2.2.9. If C is locally presentable and D is small, then C D is locally pre-
sentable. By Theorem 2.2.8 C is equivalent to a full reflective subcategory of SetsA

op

which is closed under λ-filtered colimits. This means that we have a functor i : C →
SetsA

op
with a left adjoint L : SetsA

op
→ C such that i preserves λ-filtered colimits

and i is an equivalence. Now we claim that C D is equivalent to such a subcategory of
SetsA×D . Since we have an embedding from C to SetsA , we get a functor iD from C D
to (SetsA )D ∼= SetsA×D . We need to show the that this functor has a left adjoint, that
it preserves λ-filtered colimits, and that it is an equivalence.

Because λ-filtered colimits are taken coordinate wise and because iD is defined as
i at every coordinate, it preserves λ-filtered colimits. To check that it is an equivalence,
we check that it is full and faithful. Since i is faithful, we again have that iD is faithful
since a natural transformation (ηD)D∈D gets mapped to (i(ηD))D∈D and i induces an
injection on Hom-sets. Also, if we have a natural transformation (ηD)D∈D in (SetsA )D

between two functors i(F) and i(G), then at every D we can find a unique preimage
τD. Now we need to show that (τD)D∈D is a natural transformation, and this follows
from the assumption that i is faithful. From faithfulness follows that only commutative
diagrams get mapped to commutative diagrams, and thus i is indeed full.

To show that iD has a left adjoint, we consider LD . By definition the counit ε :
i ◦ L ⇒ Id and unit η : Id ⇒ L ◦ i such that (εF) ◦ (Fη) = Id and (Gε) ◦ (ηG) = Id .
Since the assignment H 7→ HD is functorial, it maps η to ηD and ε to εD such that the
required diagrams for iD and LD commute. Hence, LD is left adjoint to iD , and now
the statement follows.



2.2. ACCESSIBLE AND LOCALLY PRESENTABLE CATEGORIES 17

From this we can conclude for example that the category of simplicial objects in a
locally presentable category is again locally presentable, and this gives a third way of
proving that SetsC

op
is locally presentable. Now we know some examples of locally pre-

sentable and accessible categories. Accessible categories satisfy the so-called ‘solution
set condition’, and this is nice. Recall the Freyd adjoint functor theorem

Theorem 2.2.10 (Freyd Adjoint Functor Theorem). Let F : C →D be a functor which
preserves all colimits. Then F has a right adjoint iff for every object X there is a set L
consisting of arrows X → F(Y ) such that all arrows f : X → F(Y ) can be factorized as

X
f
//

fi

��

F(Y )

F(Yi)
F(g)

;;

with fi ∈ L .

The condition in this theorem is called the solution set condition. In this thesis
however we are not interested in this condition in general, but rather in a specific
instance. Given a category C with a class W of morphisms, we have an inclusion
functorW→C . This also gives a functor Mor(W)→Mor(C ). If this functor satisfies
the solution set condition, then it means that for all arrows m : A→ C there is a set Wm
for which all commutative diagrams

A
f
//

m
��

B

w
��

C g
// D

can be factored as
A //

m
��

X

wm

��

// B

w
��

C // Y // D
where wm ∈ Wm. If we say W satisfies the solution set condition, then we mean that
MorW→MorC satisfies the solution set condition.

Definition 2.2.11 (Accessible Functor). Let C and D be λ-accessible categories. Then
a functor F :C →D is called λ-accessible iff its preserves λ-directed colimits. A functor
is called accessible iff it is λ-accessible for some λ.

An accessible subcategory of C is a subcategoryB such that the inclusionB →C
is an accessible functor. Now we discuss some properties of accessible categories and
accessible functors which help us to find examples of accessible categories. The first
one is a way to check for the solution set condition.

Proposition 2.2.12. Accessible functors satisfy the solution set condition.

For accessible functors this gives an easy test to see whether they have an adjoint,
namely that it preserves the right limits. From this we can conclude that accessible
subcategories satisfy the solution set condition at every object. The other property says
that accessible categories are preserved under exponentials.
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Proposition 2.2.13. If D is a small category and C is an accessible category, then C D is
accessible.

The last property on accessible categories we need, can be used to find more exam-
ples of accessible categories. It says that the inverse image of an accessible subcategory
under an accessible functor is again accessible.

Proposition 2.2.14. Let F : D → C be an accessible functor, and let B be an accessible
subcategory of C . Then the full subcategory F−1(B) of D, consisting of the objects X such
that F(X ) is an object inB , is an accessible subcategory of D.

We will not give the proof here and instead refer the reader to [AR94].



CHAPTER 3

Finding Model Structures

We have defined an abstract notion of model structure, and the question is how to
find these in nature. Most axioms of Definition 2.1.1 are easy to check, namely (M1)
to (M3). In a lot of examples either the fibrations or the cofibrations are defined in
such a way that one of the lifting properties in (M4) trivially holds. However, (M5) is
often difficult to check, and hard to do by hand. A general way of constructing such
factorizations, is given by Quillen’s small object argument.

3.1. Quillen’s Small Object Argument

Quillen’s small object argument constructs the factorization into certain classes of
maps if we can find a set which generates these classes. To apply this, we need to find
generators for both the cofibrations and the trivial cofibrations. This is often way more
convenient than directly constructing the factorizations by hand, and we will discuss
some examples where we can apply this method.

Recall that a transfinite composition is defined as the colimit of a diagram over
some ordinal. Let α be an ordinal number, and suppose that we have composable
maps fβ : Aβ → Aβ+1 for all β < α such that for all limit ordinals β < α we have
Aβ ∼= colimγ<β Aγ. Then we can form the diagram

A0
f0 //

��

A1
f1 //

zz

. . .

Aω
fω //

��

Aω+1
fω+1 //

zz

. . .

Aω+ω
fω+ω // Aω+ω+1

fω+ω+1 // . . .

The colimit of this diagram is defined to be the transfinite composition of all fβ .

Definition 3.1.1. LetC be a category and let I be a set of morphisms inC . An I -cellular
complex is a factorization of a map 0→ X as a transfinite composition of pushouts along
I . Let Cell(I) be the collection of I -cellular complexes, and note that it is closed under
transfinite composition and pushout along I . The I -cofibrations are the retracts of the
I -cellular complexes, and the I -injective maps are the maps which have the right lifting
property with respect to I . The collection of I -cofibrations is denoted as Cof(I) and the
collection of I -injective maps as Inj(I).

One might wonder why I -cellular complexes are called such, and that is because
they resemble the cellular complexes from topology. Take I to be the collection of

19
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boundary inclusions Sn−1 → Dn and ; → D0, and let us show that the circle is a I -
cellular complexes. To add a point to X , we take the pushout

; //

��

X

��

D0 // X+

Note that the map ; → D0 is in I , and note that in a similar fashion we can add n-cells
to X . For the circle we want to add a line and a point, so we start by adding a point to
; to obtain ∗. Next we add a line to ∗ using the following pushout

S0 //

��

∗

��

D1 // S1

The map S0 → ∗ is the constant map, and this pushout gives S1. Now we can factor
; → S1 as ; → ∗ → S1 by composing the pushout maps. If we construct a cellular
complex with an infinite amount of cells, we need transfinite composition for infinite
ordinals.

Note that whenever f has the right lifting property with respect to I , then it has
the right lifting property with respect to every I -cellular complex.

Theorem 3.1.2 (Quillen’s Small Object Argument). Let C be a locally presentable and
locally small category, and let I be a set of maps in C . Then every map f : A→ B can
functorially be factorized as p ◦ i where p ∈ Inj(I) and i ∈ Cell(I).

The first step of the proof is building objects Xα for every ordinal α smaller than
some large ordinal λ. Step by step we glue certain things to X , and at every step we
have a map Xα → Y . When we arrive at λ, we get the desired factorization. The map
X → Xλ is a cellular complex by construction, and to show that Xλ is an I -injective, we
use the fact that C is locally presentable.

PROOF. Because C is locally presentable, each domain Ai of an arrow i ∈ I is µi-
small for some µi , and define λ to be successor the supremum of all µi , so λ =

⋃

i µi .
Since successor cardinals are regular, this means that λ is regular Now we will glue step
by step certain things to X such that at every step we have a map to Y , and we will do
that using transfinite induction. We start by defining X0 to be X , and next assume that
we have Xα for α < λ with a map h : Xα→ Y .

To construct Xα+1 we consider all diagrams of the form

Ai
//

i

��

Xα

h
��

Bi
// Y

where i ∈ I . Since C is assumed to be locally small, we have a set S which contains all
these diagrams. More concretely, S consists of triples (i, f , g) with i ∈ I , f : Ai → Xα
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and g : Bi → Y such that g ◦ i = h ◦ f . Now we can form the pushout

∐

(i, f ,g)∈S Ai

��

// Xα

��
h

��

∐

(i, f ,g)∈I Bi
//

))

P

��

Y

The map
∐

i∈I Ai →
∐

i∈I Bi is given on factor (i, f , g) by the map i, the map
∐

i∈I Ai →
Xα is defined on factor (i, f , g) as the map f , and lastly the map

∐

(i, f ,g)∈I Bi → Y is
given on (i, f , g) as g. Since for all (i, f , g) we have g ◦ i = h ◦ f , we indeed have the
map from P to Y . For the induction step we thus define Xα+1 to be P, and we note that
now we indeed have a map from Xα+1 to Y .

For a limit ordinal µ≤ λ we define Xµ as the transfinite composition colimα<µ Xα.
Since at every factor we have a map from Xα to Y and because the required diagrams
commute, we get a map Xµ → Y . With this construction we have obtained an object
Xλ and a factorization

X
f

//

  

Y

Xλ

>>

Since the map X → Xλ is defined a transfinite composition of pushouts of I , it is a
I -cellular complex. Hence, it remains to show that the map Xλ→ Y is an I -injective.

Suppose we have a diagram

Ai

i

��

// Xλ

��

Bi
// Y

and we need to find a lift. Note that Ai is λ-small from which we can conclude that mor-
phisms from Ai to Xλ factor through some α < λ. This is the sets Hom(Ai , colimα<λ Xα)
and colimα<λHom(Ai , Xα) are isomorphic, and thus the map Ai → Xλ gives a map
Ai → Xα for some α < λ. Now we can look at the following diagram

Ai

i

��

// Xα

!!

// Xα+1
//

��

Xλ

}}
Bi

// Y
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Let us recall for a moment that Xα+1 was defined as the following pushout
∐

(i, f ,g)∈S Ai

��

// Xα

��
h

��

∐

(i, f ,g)∈I Bi
//

))

Xα+1

  

Y

We have the inclusion of Ai and Bi into
∐

(i, f ,g)∈S Ai and
∐

(i, f ,g)∈I Bi respectively using
the upper and lower map in the diagram. This gives us a map from Bi to Xα+1 which
makes the following diagram commute

Ai
//

��

Xα+1

��

Bi
//

==

Y

By composing we can also find the desired lift Bi → Xλ which completes the proof of
Quillen’s small object argument. �

This theorem is our main tool to find model structures. To find the model structure,
we find generating sets for the cofibrations and the trivial cofibrations. Then we apply
Quillen’s small object argument twice to conclude. If we can construct a model structure
this way, then it is called combinatorial.

Definition 3.1.3 (Combinatorial Model Category). A model categoryM is called com-
binatorial iff it is locally presentable and there is a set I of cofibrations and a set J of
trivial cofibrations such that the cofibrations are Cof(I) and the trivial cofibrations are
Cof(J).

As an application we can already give a way to find combinatorial model structures.

Theorem 3.1.4. Let C be a locally presentable category, a subcategory We of C and let
two sets I and J of maps be given. Suppose that

(1) We satisfies the 2-out-of-3 property and is closed under retracts;
(2) Cof(J) ⊆ Cof(I)∩We;
(3) Inj(I) ⊆We.

Then we have a combinatorial model structure on C where the weak equivalences are We,
the cofibrations are Cof(I), and the fibrations are Inj(J)

PROOF. Let us check that the axioms hold, and let us start with the straightforward
part. Because C is locally presentable, it has all small limits and colimits, and thus
(M1) holds. By assumption the 2-out-of-3 property is satisfied, and thus (M2) holds
as well. Also, we assumed that We is closed under retracts and by definition Cof(I)
and Inj(Cof(J) ∩We) are closed under retracts, and from this (M3) follows. One of
the axioms of (M4) is trivial, because the fibrations are defined to be the maps with
the right lifting property with respect to the trivial cofibrations. Using Quillen’s small
object argument we can factorize maps as a trivial cofibration followed by a map which
has the right lifting property with respect to trivial cofibrations. Since we know that
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the fibrations are precisely the maps which have the right lifting property with respect
to trivial cofibrations, we get the desired factorization.

Now we check the other parts of (M5) and (M4). Since Cof(J) ⊆ Cof(I) by (2), we
have that Inj(Cof(I)) ⊆ Inj(J). Hence, if a map has left lifting property with respect to all
cofibrations, then it is a fibration. By Quillen’s small object argument we can factorize
a map as a cofibration followed by a map which has the right lifting property with
respect to the cofibrations, and that map must be a fibration. By (3) this map is a weak
equivalence, and thus (M5) holds. Let us denote cofibrations by X // //Y , fibrations
by X // //Y , and maps with the right lifting property with respect to cofibrations by
X // //Y . First we show that trivial fibrations have the right lifting property with
respect to cofibrations, and for that we start with the following diagram

X��

��

// A

∼

����

Y // B

We can factor A ∼ // //B as a trivial cofibration followed by a fibration, and by the 2-out-
of-3 property the fibration is a weak equivalence as well, and this gives the following
diagram

X��

��

// A
∼

����

��

∼
��

E

�� ��

Y // B
We get a map Y //E , because we can find a lift in the following diagram

X //
��

��

A // ∼ // E

����

Y // B

Also, we have a map from E to A, because we can find a lift in the following diagram

A��

∼

��

A

∼

����

E // B

This is because trivial cofibrations have the left lifting property with respect to fibra-
tions. Hence, trivial fibrations have the right lifting property with respect to the cofi-
brations, and thus (M4) holds. �

Note that the model structure defined in the proof is indeed combinatorial, because
the cofibrations and trivial cofibrations are generated by some set.

Example 3.1.5 (Projective Model Structure on Functors). We define a model structure
on the category of functors, so letM be combinatorial category and D be small. Since
we would like to apply Quillen’s small object argument, we need thatMD is locally pre-
sentable, and that is why we require thatM is combinatorial. Define a model structure
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onMD where the weak equivalences and the fibrations are defined objectwise, but now
the cofibrations are defined to be the maps which have the left lifting property with re-
spect to all trivial fibrations. This model structure is called the projective model structure
or the Bousfield-Kan model structure, and was first described in [BK87].

To show that this is indeed a model structure, we use Theorem 3.1.4. Note that
MD is locally presentable, becauseM is locally presentable. Also, (1) obviously holds,
because it holds in M and weak equivalences are defined pointwise. Because M is
combinatorial, there are sets IM and JM of generating cofibrations and trivial cofibra-
tions respectively. For an object D of D and X ofM , define a presheaf

F D
X (D

′) =
∐

α∈D(D,D′)

X

So, F D
X (D

′) has a copy of X for every arrow f : D→ D′ in D. We define this presheaf,
because a (trivial) cofibration i : X → X ′ induces a (trivial) cofibrationbi : F D

X → F D
X ′ , and

the generating sets will consists of these maps. Now let i : X → X ′ be any cofibration
inM , and note that this gives a map bi : F D

X → F D
X ′ .

Let us check that bi has the left lifting property with respect to all trivial fibrations.
Consider the following square where p is at every point a trivial fibration

F D
X

//

bi
��

G

p

��

F D
X ′

// H

Our goal is to construct a lift F D
X ′ → G, and the main point is that maps F D

X ′ → G
correspond with maps X ′→ G(D). For every object D′ of D we can look at the square

F D
X (D

′) //

i
��

G(D′)

pD′

��

F D
X ′(D

′) // H(D′)

To find a lift, one might expect that we can take a lift at every point. However, to-
gether these might not be a natural transformation, and this is why we defined F(D′)
as
∐

α∈D(D,D′) X . The idea is here to first find lift for copy of F(D) at the identity arrow,
and then to extend it.

Let us execute this plan for which we look at the square

X

i
��

// G(D)

pD

��

X ′ // H(D)

This diagram has a lift eh : X ′ → G(D). Now for an object D′ and an arrow f : D→ D′

we define X → G(D′) as G( f ) ◦ eh. Since F D
X (D

′) =
∐

α∈D(D,D′) X , this is sufficient to
define a map hD′ : F D

X (D
′)→ G(D′) for all D′.
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Next we need to check that hD′ is natural. Suppose we have f : D′→ D′′, and then
we need to check the following diagram commutes

∐

α∈D(D,D′) X

F D
X ( f )

��

hD′ // G(D′)

G( f )

��
∐

α∈D(D,D′′) X hD′′

// G(D′′)

To check it commutes, we check it for all factors of
∐

α∈D(D,D′) X , so let g : D → D′

be arbitrary. Under F D
X ( f ) the gth factor of

∐

α∈D(D,D′) X gets mapped to the ( f ◦ g)th
factor of

∐

α∈D(D,D′′) X . So, it simplifies on this factor to the following rectangle

X

Id

��

eh // G(D)
G(g)
// G(D′)

G( f )
��

X
eh
// G(D)

G( f ◦g)
// G(D′′)

which commutes by functoriality of G. Hence, h is indeed a natural transformation,
and thus we have found the desired lift.

Similarly, if j : X → X ′ is a trivial cofibration, then the map ej : F D
X → F D

X ′ is a trivial
cofibration. Motivated by this we define I = {ei | i ∈ IM } and J = {ej | j ∈ JM }. Next we
show (3). Let p : G→ H be any map which has the right lifting property with respect to
all maps in I . We need to show that pD′ : G(D′)→ H(D′) is a trivial fibration meaning
that is has the right lifting property with respect to all maps in I . So, take an arbitrary
map i : X → X ′ with i ∈ I , and an arbitrary square

X

i
��

// G(D′)

pD′

��

X ′ // H(D′)

We can extend this to a square on the presheaves by using similar techniques as before.
The maps in the square determine the natural transformations on the identity factor,
and then we can extend them. This thus gives the following commuting square

F D′
X

ei
��

// G

p

��

F D′
X ′

// H

By assumption we have a lift h : F D
X ′ → H. Evaluating at D′ gives the rectangle

X

i

��

//
∐

α∈D(D′,D′) X //

ei
��

G(D′)

pD′

��

X ′ //
∐

α∈D(D′,D′) X
′ // H(D′)
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where the inclusions are to the Id -factor. Hence, p is a trivial fibration, and thus (3)
holds.

Checking (2) is easy now. Since J ⊆ I , we have Cof(J) ⊆ Cof(I). Every map j ∈ J
has the left lifting property with respect to the fibrations, and with a similar argument
we can show that this implies that j is a weak equivalence at every point. Also, since
operations of Cof are performed pointwise, and every map in J is a weak equivalence
at every point, we have Cof(J) ⊆We, because it holds inM and weak equivalences are
defined pointwise.

Dually. one has the injective model structure where the cofibrations and weak equiv-
alences are defined pointwise [Hel88]. However, to show that this is a model structure,
requires more technique. Since we do not need this model structure in this thesis, we
will not look at the proof.

On the other, there is a small number of examples in which we do not need the
small object argument. For example, we could consider the Reedy model structure which
again is on functor categoriesMD. However, in this case we require D to be a special
kind of category, namely a Reedy category.

Definition 3.1.6 (Reedy Category). A Reedy category is a triple (D,D+D−) where D is
a small category with two subcategories D+ and D− with a function d : D→ λ sending
objects of D to some ordinal µ < λ. This data is required to satisfy the following

(1) Every map f can be factored uniquely as g ◦ h where g ∈ D+ and h ∈ D−.
(2) If we have a nonidentity map f : A→ B in D+, then d(A)< d(B).
(3) If we have a nonidentity map f : A→ B in D−, then d(A)> d(B).

The simplex category ∆ is a Reedy category where the degree of [n] is n. We have
subcategories D+ consisting of the monomorphisms, and D− which contains the epi-
morphisms. To construct the model structure onMD where D, we will use transfinite
induction. For this the main ingredients are the matching spaces and the latching spaces.
To define the latching space, first we define a category D+,X whose objects are arrows
nonidentity arrows f : Y → X , and the arrows from f : Y → X to g : Z → X are maps
h : Y → Z such that f = g ◦ h. The latching space functor LX is defined to be the
composition

C D // C D+,X
colim // C

where the first map is given by restriction. Dually, we can define the matching space.
For an object X we first define a category D−,X whose objects are nonidentity arrows
f : X → Y and the arrows are again commutative triangles. The matching space functor
MX is then defined to be the composition

C D // C D−,X
lim // C

From the universal property of the limit and the colimit we always get natural
transformations LX (A)→ AX → MX (A) for X in D and A∈ C D.

Example 3.1.7. The cofibrations and fibrations are defined in a different way which
gives this model structure different uses from the injective and projective model struc-
ture. A natural transformation η : X ⇒ Y is called a Reedy cofibration iff every map
X i

∐

Li X
LiY → Yi is a cofibration, and f is called a Reedy fibration iff every X i →
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Yi ×Mi Y MX is a fibration. Here X i

∐

Li X
LiY is the pushout of the diagram

LiX

��

// LiY

��

X // X i

∐

Li X
LiY

and Yi ×Mi Y MX is the pullback

Yi ×Mi Y MX
//

��

Yi

��

MiX // MiY

This way we get a model structure onMD for a Reedy category D. Instead of Quillen’s
small object argument, one can use transfinite induction to show the lifting axioms and
the factorization axioms, and a precise proof can be found in [Hov07].

The disadvantage of Reedy categories is that they cannot have nontrivial automor-
phisms. If f is a nontrivial automorphism, then we cannot have f ∈ D+ or f ∈ D−,
because f neither raises nor lowers the degree. If we had such a map f , then using
the factorizations we can write f = g ◦ h and h ◦ f −1 = g ′ ◦ h′ with g, g ′ ∈ D+ and
h, h′ ∈ D−. Now we can compute

Id = g ◦ h ◦ f −1 = g ◦ g ′ ◦ h′

where g, g ′ ∈ D+ and h′ ∈ D−. Since the factorization is unique, we have g ◦ g ′ = Id
and h′ = Id . The map g lies in D+, so if it would not be the identity, then it raises the
degree. However, if g raises the degree, then g ◦ g ′ must raise the degree as well, but
this is impossible. The map g ◦ g ′ is the identity, so it does not raise the degree. This
allows us to conclude that g = Id , and thus f = g ◦ h = h. By definition of h we have
h ∈ D−, and that gives f ∈ D−. This is absurd, because f can neither raise nor lower
the degree, and thus a Reedy category cannot have nontrivial automorphisms.

To solve this, one can consider the generalized Reedy model structure from [BM11]
The definitions of the model structure and the main idea of the proof is similar, but it
is more complicated. We will not require generalized Reedy model structures in this
thesis, and thus we will not discuss them.

3.2. Transfering Model Structures

Transfer basically says that with adjunctions we can create new model structures
under suitable assumptions. The conditions of the proposition are chosen in such a way
that we can perform the small object argument in the new category by doing it in the
old category. The following proposition is from [Cra95], but the ideas originally came
from [Qui67].

Proposition 3.2.1 (Transfer). Let C be a category with all small limits and colimits and
letM be a model category. Suppose that we have an adjunction L a R with L :M →C
and that the following conditions are satisfied

(1) M is combinatorial and the cofibrations and trivial cofibrations are generated
by I and J respectively.

(2) C is locally presentable.
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(3) Weak equivalences inM are closed under filtered colimits.
(4) The right adjoint R preserves filtered colimits.
(5) Given a map f ∈ J and a pushout g of L( f ), the map R(g) is a weak equivalence.

Then there is a combinatorial model structure on C where the weak equivalences are
R−1(We), the fibrations are R−1(Fib), and the cofibrations are the maps with the left lifting
property with respect to R−1(We)∩ R−1(Fib).

PROOF. Since C satisfies (M1) by assumption. If two of g, f and g ◦ f are weak
equivalences, then two of R(g), R( f ) and R(g ◦ f ) are weak equivalences. The third
must then also be a weak equivalence, and thus (M2) is satisfied. For (M3) we can do
the same thing: if f is a retract of g, then R( f ) is a retract of R(g), and because the
cofibrations are defined as maps having the left lifting property with respect to some
class, they are closed under retracts too. By definition the cofibrations have the left
lifting property with respect to the trivial fibrations, and this gives one half of (M4).

Now we continue with (M5), and we apply the small object argument on L(I)
(recall that the cofibrations are generated by I). Before we do that, we need to play
with the adjunction a bit. First note that for i ∈ I the map L(i) is a cofibration. For that
we start with the diagram

L(A) //

L(i)
��

B

g

��

L(C) // D

where g ∈ R−1(We)∩ R−1(Fib). Next we factor this diagram using the counit map

L(A) //

L(i)
��

L(R(B)) //

L(R(g))
��

B

g

��

L(C) // L(R(D)) // D

and to solve the lifting problem, we look for a lift from L(C)→ L(R(B)). To find this
lift, we first find a good map from C → R(B), and then we apply L on it. For that we
look at the diagram

A //

i

��

R(B)

R(g)
��

C // R(D)

Note that R(g) ∈We∩Fib and that i is a cofibration. Hence, the desired lift exist, and
this gives the lift we wanted to show that L(i) has the left lifting property with respect
to R−1(We)∩ R−1(Fib).

Let f be a map which has the right lifting property with respect to all L(i). We shall
prove that R( f ) ∈We∩Fib, and for that we need to solve the following lifting problem

A

i

��

// R(B)

R( f )
��

C // R(D)
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Again we factor this diagram, but this time we use the unit map

A

i

��

// R(L(A)) //

R(L(i))
��

R(B)

R( f )
��

C // R(L(C)) // R(D)

To solve this lifting problem, we find a lift from R(L(C)) to R(B), and we do this by
finding a suitable map L(C)→ B. Look at the following diagram

L(A) //

L(i)
��

B

f

��

L(C) // D

Since f has the right lifting property with respect to all L(i), this diagram has a lift and
thus R( f ) has the right lifting property with respect to I .

The small object argument gives that every map f can be factored as a L(I)-cellular
complex α( f ) followed by a map β( f ) having the right lifting property with respect to
L(I). Since all L(i) for i ∈ I are cofibrations and the cofibrations are closed under the
operations to form cellular complexes, we get that α( f ) has the left lifting property with
respect to R−1(We)∩ R−1(Fib). Also, β( f ) has the right lifting property with respect to
L(I), and from that we conclude that R(β( f )) ∈ We∩Fib. This allows us to conclude
that β( f ) is a trivial fibration, and thus we have found one of the desired factorizations.

To find the other factorizations, we apply the same thing. We apply the small object
argument to L(J) to see that we can factorize f as a map γ( f ) which is a L(J)-cellular
complex followed by a map δ( f ) which has the right lifting property with respect to
L(J). By using the same argument as for the trivial fibrations we can show that δ( f ) is
a fibration. For γ( f ) there is an issue: the argument we used before can only be used to
show that it is a cofibration, but it should be a weak equivalence as well. To show that
it is a weak equivalence as well, we use the additional assumptions. A cellular complex
on J is a transfinite composition of pushouts of maps in J , and we need to prove that
its image under R is a weak equivalence. Since R preserves filtered colimits and thus
transfinite compositions, it is sufficient to prove that the pushouts are mapped to weak
equivalences. So, we have a pushout g of L(i), and we need to prove that R(g) is a
weak equivalence. This is precisely assumption (5), and thus (M5) holds.

To finish the proof, we need to show the other half of (M4) states that fibrations
have the right lifting property with respect to trivial cofibrations. Let i be a trivial
cofibration, and we just showed that we can factor i as a L(J)-complex j followed by a
fibration p. This means that we have the following diagram

A
j
//

i
��

B

p

��

C
Id
// C

Since i and j are weak equivalences, p must be a weak equivalence as well. Hence, i
is a trivial cofibration and p is a trivial fibration, and thus we get a lift h : C → B. This
gives that i is a retract of j, and thus i is a L(J) cofibration, because it is the retract
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of a L( j)-complex. Since L(J)-cofibrations have the left lifting property with respect to
fibrations, the other half of (M4) follows. �

Transfer can be used to find a model a structure on simplicial universal algebras
SAlg. We have a forgetful functor i : SAlg → SSet, and this has a left adjoint F :
SSet→ SAlg which takes the free algebra. Since i is the forgetful functor, it preserves
all colimits. Later we show that (3) and (5) hold as well, and thus we get a model
structure on the simplicial algebras in which the fibrations and weak equivalences are
detected by the forgetful functor.

3.3. Homotopy Colimits

In normal category theory we can glue objects by using colimits. However, this
construction is not nice from a homotopical perspective, because it is not invariant un-
der homotopy. We could for example glue two lines to obtain a circle via the following
colimiting diagram

S0 //

��

I

��

I // S1

But the spaces ∗ and I are homotopy equivalent, and via this homotopy equivalence we
can get the following colimit

S0

��

// ∗

��
∗ // ∗

Since S1 and ∗ are not homotopy equivalent, colimits are not invariant under homotopy.
This is quite a disadvantage for algebraic topologists, because it does not allow for

a computation of the homotopy groups of the colimit. To fix this, we replace colimits
by homotopy colimits which will turn out to be invariant under homotopy. Instead
of gluing, we glue up to homotopy, and to formalize this, we need the language of
cosimplicial resolutions. Recall that a cosimplicial object of C is an element of C∆,
and because ∆ is a Reedy category, we can put the Reedy model structure on this
category by Example 3.1.7. The model category of cosimplicial resolutions inM with
the Reedy model structure will be written as cM . Also, for every object X of C we get
a cosimplicial object c∗(X ) which is X in every degree.

Definition 3.3.1 (Cosimplicial Resolutions). Let X be an object of a model categoryM .
Then a cosimplicial resolution is a Reedy cofibrant object Γ in M∆ with a degreewise
weak equivalence Γ → c∗(X ).

Let us try to visualize what cosimplicial resolutions are. Because we have the weak
equivalence Γ → c∗(X ), every Γ i is equivalent to X . The resolution Γ looks as follows

Γ 0 //
// Γ 1

gg

//
//
// . . .aa

{{

But we know more: we know that ! : ∗ → Γ is a cofibration. To see what this means, we
need to work out the definitions of Example 3.1.7. By definition ! is a cofibration iff for
all degree n the map LnΓ

∐

Ln∗
∗ → Γn is a cofibration. Since ∗ is the initial object, this

means that the map LnΓ → Γ must be a cofibration. For LnΓ we glue Γn−1 according
to the boundary of ∆n, and the map LnΓ → Γ is the boundary inclusion. Hence, with



3.3. HOMOTOPY COLIMITS 31

a cosimplicial resolution we can capture the homotopical data of an object. Next we
extend our definition of cosimplicial resolution to talk about cosimplicial resolutions of
functors.

Definition 3.3.2. Given a functor γ : C →M , then a cosimplicial resolution of γ is a
functor Γ : C → cM with a weak equivalence Γ (X )→ c∗(γ(X )) such that each Γ (X ) is
Reedy cofibrant.

Using the injective model structure on (cN )C , one can state the definition more
compactly by saying that Γ is cofibrant. At every point we thus have a cosimplicial reso-
lution of γ(X ), and the weak equivalence must be natural. Let Γ1 and Γ2 be cosimplicial
resolutions of γ. Then a map from Γ1 to Γ2 is a natural transformation η : Γ1⇒ Γ2 such
that the following diagram commutes

Γ1(X )

$$

ηX // Γ2(X )

zz

c∗(γ(X ))

So, this gives that for every γ we have a category of cosimplicial resolutions of γ, and
we denote this category by coRes(γ). An easy property of cosimplicial resolutions is
that they always exist.

Proposition 3.3.3. LetM be a model category, and let γ : C → D be a diagram. Then
γ has a cosimplicial resolution Γ .

We will not give the precise proof, but instead a sketch and leave the details to the
reader. The main idea of the proof is to take a cofibrant replacement in the Reedy model
structure. This way we can find cosimplicial resolutions of any given object. Because
the factorizations are functorial, we can turn this into a functor. Hence, this results in
a cosimplicial resolution of γ.

The next step in defining colimits, is realizing simplicial sets using a cosimplicial
resolution γ. For a set S and an object X we write S · X for

∐

s∈S X . Using this notation
we define the left action K ⊗∆ γ for a cosimplicial resolution γ and a simplicial set K as
the following coequalizer.

K ⊗∆ γ= coeq

 

∐

[k]→[m]

Km · γk⇒
∐

n

Kn · γn

!

The main idea of this definition is that we realize γn as the n-simplex, and then glue
according to the simplicial set. So, first we put all n-simplices together using the big
coproduct

∐

n Kn ·γn. Now we only need to glue them in the correct way by identifying
the boundaries and the degeneracies in the correct way. That is why we have the
coequalizer and we sum over all arrows [k] → [m] in the first coproduct. Also, note
the similarities between this formula and the formula for the geometric realization of
a simplicial set. They are the same formulas, but with n-simplex replaced by γn. Let us
compute ∆[n]⊗∆ γ.

Proposition 3.3.4. For a cosimplicial resolution γ we have ∆[n]⊗∆ γ= γn.
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PROOF. By definition we have

∆[n]⊗∆ γ= coeq

 

∐

[k]→[m]

∆[n]m · γk⇒
∐

k

∆[n]k · γk

!

,

and we have to show this coequalizer is γn. For that we use the universal property of
the coequalizer. Note that the object ∆[n]k · γk has for every map f : [k]→ [n] a copy
of γk, and to define a map ∆[n]k · γk → γn we need to make a map γk → γn for every
f : [k]→ [n]. Since γ is a cosimplicial resolution, we always have such a map, namely
γ( f ) : γk → γn. This allows us to define

∐

k∆[n]k ·γ
k → γn, because on the pair (n, f )

we define it as γ( f ).
Next we show that this map makes the required diagram commute. We need to

check this on every copy∆[n]m ·γk for g : [k]→ [m], and since∆[n]m ·γk is defined as
∐

f :[m]→[n] γ
k, it suffices to check it on every copy γk with f : [m]→ [n] and g : [k]→

[m]. If we work out the definitions, then we get the following diagram

γk

γ(g)

��

Id
// γk

γ( f ◦g)
��

γm
γ( f )
// γn

and this commutes, because γ is functorial.
Lastly, we need to check γn satisfies the universal property. Suppose, we have a map

f :
∐

k Kk · γk → Z such that
∐

[k]→[m]∆[n]m · γ
k ⇒

∐

k∆[n]k ⊗∆ γ
k → Z commutes.

Note for the identity map Id : [n]→ [n] this gives the diagram

γn Id
//

g
  

γn

Z

and from this we can already conclude that the map γn → Z would be unique. Also,
this already gives a candidate which we call g. To check that g has the right property,
we need to check that for h : [k]→ [n] the diagram

γk γ(h)
//

fh
��

γn

g

��

Z

This commutes, because f is a natural transformation. Hence, γn is indeed isomorphic
to ∆[n]⊗∆ γ. �

Now we can define homotopy colimits. Recall from Example 2.1.4 that we have
a functor N , called the nerve functor, sending a small category C to the simplicial
set N (C ) where N (C )n consists of all strings of n composable arrows. Also, recall
that the under category C ↓ C for a category C and object C is the category where
the objects are arrows C → D and arrows from f : D → C to g : E → C are arrows
h : D→ E such that f = g ◦ h.
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Definition 3.3.5 (Homotopy Colimit). Let X : I →M be a diagram. Also, let Γ be a
cosimplicial resolution of X . Then we define the homotopy colimit of X to be

hocolimI (X ) = coeq

 

∐

i→ j

N ( j ↓ I)op ⊗∆ Γ (i)⇒
∐

i

N (i ↓ I)op ⊗∆ Γ (i)

!

The choice of the cosimplicial resolution matters for hocolimI (X ), but in this thesis
the chosen cosimplicial resolution will always be clear. When proving properties about
homotopy colimits, we will assume the cosimplicial resolution to be fixed. One can
show that the homotopy colimit is the left derived functor of the colimit, and a proof is
given in Theorem 9.1 of [Shu06].

To motivate the definition, we will consider homotopy pushouts of topological
spaces as an example. Recall that a pushout is the colimit of a diagram of the form

X0
f
//

g

��

X1

X2

We can find a cosimplicial resolution for this diagram by taking Γ (i) to be X Cof
i ×∆

n in
degree n, and remember that the cofibrant replacement of topological spaces is given
by the mapping cylinder. Taking the projection in every degree gives a degreewise weak
equivalence to c∗(X ). Also, we need the map Ln(Γ )→ Γn to be a cofibration, and this
is so, because the boundary inclusion of X × ∂∆n into X ×∆n is a cofibration for every
space X . Note that the under categories 1 ↓ I and 2 ↓ I are trivial, and that 0 ↓ I is I
itself.

Let us compute N ((1 ↓ I)op)⊗∆ Γ (1) and N ((2 ↓ I)op)⊗∆ Γ (2) first. By definition
we have

N ((1 ↓ I)op)⊗∆ Γ (1) = coeq

 

∐

[k]→[m]

Γ (1)k⇒
∐

n

Γ (1)n

!

= coeq

 

∐

[k]→[m]

X Cof
1 ×∆k⇒

∐

n

X Cof
1 ×∆n

!

and this is the geometric realization of the constant simplicial space which is X Cof
1 in

every degree. Using Lemma 11.8 of [May72] this is homeomorphic to X Cof
1 . Similarly,

we can show that N ((2 ↓ I)op)⊗∆ Γ (2) = X2.
Also, we need to determineN ((0 ↓ I)op)⊗∆ Γ (0). For that we first look at X0×Km

which by definition is
∐

x∈Km

X0 ×∆k = (X0 ×∆k)× (
∐

x∈Km

∗)

= (X0 ×∆k)× |
∐

f :[1]→[m]

∆[0]|

= (X0 ×∆k)× |Km|

= (X0 × |Km|)×∆k
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Here we regard the simplicial set as a discrete simplicial space. We can thus conclude
that

N ((0 ↓ I)op)⊗∆ Γ (1) = coeq

 

∐

[k]→[m]

(X Cof
0 × |Km|)×∆k⇒

∐

n

(X Cof
0 × |Kn|)×∆n

!

and this is X Cof
0 × |K |, because geometric realization commutes with finite limits by

[May99]. Since |N ((0 ↓ I)op| is homeomorphic to the interval ∆1, we can conclude
thatN ((0 ↓ I)op)⊗∆Γ (0) = X0× I . Also, the maps f and g give maps X Cof

0 → X Cof
0 ×∆

1,
and these maps are determined by the given homeomorphism. We can assume that for
f : X0 → X1 the induced map X0 → X0 ×∆1 is ι0(x) = (x , 0) and for g : X0 → X2 it is
ι1(x) = (x , 1).

The last step is gluing these pieces together which gives the homotopy colimit

coeq

 

∐

i→ j

N ( j ↓ I)op ⊗∆ Γ (i)⇒
∐

i

N (i ↓ I)op ⊗∆ Γ (i)

!

.

In the same way as before we can show that N (1 ↓ I)op ⊗∆ Γ (0) = N (2 ↓ I)op ⊗∆
Γ (0) = X Cof

0 . For this coequalizer we need to glue several things, and for that we
need to look at the two nonidentity maps. First of all, we have f : X Cof

0 → X Cof
1 and

ι0 : X Cof
0 → X Cof

0 ×∆1 mapping x to (x , 0). Second of all, we have g : X Cof
0 → X Cof

2
and ι1 : X Cof

0 → X Cof
0 ×∆1 which maps x to (x , 1). Hence, the homotopy pushout of

this diagram is (X Cof
0 ×∆

1)
∐

X Cof
1

∐

X Cof
2 where we identify (x , 0) with f (x) and (x , 1)

with g(x).
This explains what a homotopy colimit is. Instead of gluing the spaces, we glue up

to homotopy. Sequences of arrows give the higher homotopies which can be understood
in a similar fashion as in the previous example.

Next we discuss some properties of homotopy colimits. Suppose we have two di-
agrams X1, X2 : I →M and a natural transformation η : X1 ⇒ X2. For X1 and X2 we
can find cosimplicial resolutions Γ1 and Γ2, and because we have a map η : X1 ⇒ X2,
we get a map Γ1 → Γ2. Also, we get a map hocolimI X1 → hocolim X2, because we can
define mapsN ( j ↓ I)op⊗∆ Γ2(i)→N ( j ↓ I)op⊗∆ Γ2(i) and all these maps together give
a map hocolimI X1→ hocolim X2. Now suppose that for every object i of I the map ηi
is a weak equivalence. If that is the case, the map hocolimI X1→ hocolim X2 is a weak
equivalence. The proof of this long, and is given in Theorem 18.5.1 from [Hir00].

The next property is about pulling back diagrams. Suppose we have two categories
I1, I2, a functor f : I1→ I2 and a functor X : I2→M . Now we can define f ∗(X ) : I1→
M as X1(i) = X2( f (i)). For X we can find a cosimplicial resolution Γ , and Γ can be
pulled back to a cosimplicial resolution for f ∗(X ). Namely, we can define ( f ∗(Γ )(i))n =
Γ ( f (i))n. Since f ∗(Γ (i))n = Γ ( f (i))n, we get an arrow f ∗(N ( j ↓ I1)op⊗∆Γ (i))→N ( j ↓
I2)op ⊗∆ Γ ( f (i)), and all these arrows together give an arrow f∗ : hocolimI1

f ∗(X ) →
hocolimI2

X . This is functorial meaning that for functors f : I1→ I2 and g : I2→ I3 we
ave g∗ ◦ f∗ = (g ◦ f )∗ and this follows directly from the formulas.

For another property we need natural transformations. Suppose, we have f , g :
I1 → I2, a diagram X : I2 → M , and a natural transformation η : f ⇒ g. Object
i of I1 then give an arrow ηi : f (i) → g(i), and that way we can make an arrow
hocolimI1

f ∗(X )→ hocolimI1
g∗(X ). With additional techniques which we did not dis-

cuss in this thesis, one can prove that the following diagram commutes in the homotopy
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category

hocolimI1
( f ∗)(X )

f∗ //

η∗

��

hocolimI2
X

hocolimI1
(g∗)(X )

g∗

66

Using all these properties we can deduce the following proposition from [Dug01a]
which we can use to recognize whether two homotopy colimits over different indexing
diagrams are weakly equivalent.

Proposition 3.3.6. Given are two small categories I and J and a diagram X : I →M .
Suppose that we have functors f : I → J and g : J → I with natural transformations
θ : f ◦ g ⇒ Id and η : g ◦ f ⇒ Id such that the following requirements are satisfied

(1) The maps X (ηi) : X (g( f (i)))→ X (i) are weak equivalences.
(2) The maps X (g(θ j)) : X (g( f (g( j))))→ X (g( j)) are weak equivalences.

Then the map g∗ is a weak equivalence.

PROOF. To show that g∗ is a weak equivalence, we use a categorical fact. Suppose

that we have maps A a //B b //C
c //D . such that b◦a and c◦b are isomorphisms.

This means that b ◦ a has an inverse f and c ◦ b has an inverse g. Then we have
g ◦ c ◦ b = Id and b ◦ a ◦ f = Id , so b has an inverse. As a consequence of this we get
f ◦ b ◦ a = Id and

a ◦ f ◦ b = b−1 ◦ (b ◦ a ◦ f ) ◦ b = b−1 ◦ Id ◦ b,

so b has an inverse. In the same way we can show that c has an inverse.
We have the following diagram

hocolimJ (g ◦ f ◦ g)∗X
g∗ // hocolimI (g ◦ f )∗X

f∗ // hocolimJ g∗X
g∗ // hocolimI X

The maps are all induced by the functors f and g. To show that g∗ and f∗ are weak
equivalences, it is sufficient to show that these are isomorphisms in the homotopy cat-
egory. Hence, it suffices to show that the compositions are weak equivalences.

Let us start with the first one. Recall that we have a weak equivalence X (ηi) :
X (g( f (i))) → X (i), and this gives the following diagram which commutes in the ho-
motopy category

hocolimI (g ◦ f )∗X
f∗ //

η∗

��

hocolimJ g∗X
g∗ // hocolimI X

hocolimI Id ∗(X )

Id ∗

33

By assumption the mapη is an objectwise weak equivalence, soη is a weak equivalence.
The map Id ∗ is a weak equivalence as well, and thus g∗ ◦ f∗ is a weak equivalence by
the 2-out-of-3 property.
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Now we do the second diagram, and here we use that the maps X (g(θ j)) are weak
equivalences.

hocolimJ (g ◦ f ◦ g)∗X
g∗ //

(gθ )∗
��

hocolimI (g ◦ f )∗X
f∗ // hocolimJ g∗X

hocolimJ g∗(X )
Id ∗

22

Again the maps Id ∗ and (gθ )∗ are weak equivalences. That (gθ )∗ is a weak equiva-
lence, is because it is an objectwise weak equivalence by assumption and thus a weak
equivalence if you take homotopy colimits. �

This proposition also holds if we do not have a natural transformation f ◦ g ⇒ Id
or g◦ f ⇒ Id , but rather zig-zags of natural transformations which get mapped to weak
equivalences.

Let us discuss a quick application of this proposition for which we need the notion
of a contractible category. A categoryC is called contractible if the geometric realization
of its nerve is a contractible topological spaces. If C is a category, then we can build a

simplicial setN (C ) which in degree n is the set of all strings A1
f1 //A2

f2 // . . .
fn //An+1 of

n composable arrows. Also, if K is a simplicial set, then we can construct a topological
space |K | with the following formula

|K |= coeq

 

∐

i→ j

K(i)×∆ j ⇒
∐

i

K(i)×∆i

!

where ∆i is the i-simplex and K(i) is seen as a discrete topological space. So, shortly
said, a category is contractible if |N (C )| is contractible.

Definition 3.3.7 (Homotopy Cofinal). Let F :C →D be a functor. Define the category
X ↓ F whose objects are arrows X → F(Y ) and whose arrows are commutative triangles
in the obvious way. Then we say that F is homotopy cofinal iffN (X ↓ F) is a contractible
category for all X

The important property of homotopy cofinal functors is given by the following
corollary.

Corollary 3.3.8. If F : C → D is homotopy cofinal and X : D →M is a diagram, then
hocolimC F∗(X )→ hocolimD X is a weak equivalence.

To prove this, we need Quillen’s Theorem A [Qui73] which says that |F | is a ho-
motopy equivalence if F is homotopy cofinal. Because both the nerve functor and the
geometric realization functor are faithful, the conditions from Proposition 3.3.6 follow,
and thus we can conclude that hocolimC F∗(X )→ hocolimD X is a weak equivalence.

3.4. Bousfield Localization

The goal of Bousfield localization is to add weak equivalences to some model struc-
ture. This does not have an obvious solution, because we cannot just redefine the weak
equivalences and then use the same cofibrations and fibrations. This is because the
lifting property (M4) from Definition 2.1.1 might be violated. If there are more weak
equivalences, then there might be more trivial fibrations, and this leads to problems.
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Before giving concrete definitions, let us try to motivate this construction by recall-
ing localization from commutative algebra. If we want to study an affine variety locally,
then the tool we use is localization. From the coordinate ring we pass to a local ring,
and this is done by formally adding inverses for some elements. Such constructions can
also be done in other things like model categories. Instead of adding multiplicative in-
verses, we do something weaker. One would expect that some maps will be turned into
isomorphisms, but instead we do something more homotopical. A collection of maps
are made into weak equivalences. This way we can define the notion of a S-localization

Definition 3.4.1 (S-localization). LetM be a model category and let S be a collection
of maps in M . An S-localization of M is a model category M/S with a left Quillen
functor F : M → M/S such that LF maps arrows in S to weak equivalences. Also,
M/S should satisfy a universal property namely that for all model categories N and
left Quillen functors G :M →N such that LG maps S to the weak equivalences, we
have a unique left Quillen functor H :M/S→N which makes the following diagram
commute

M

F
��

G // N

M/S
H

<<

Unlike the situation in commutative algebra here localizations need not to exist.
Also, it might be difficult to deal with them, because we do not know how to construct
such localizations. If suitable assumptions are satisfied, then it is always possible to
produce such a localization in such a way that we know the category, the weak equiva-
lences, and the cofibrations. To define Bousfield localizations, we need some build up:
we need the notion of a homotopy function complex

Normally, the sets Mor(X , Y ) do not carry extra structure, but we would like them
to be simplicial sets. In degree 0 we have the functions, in degree 1 we have the
homotopies between functions, and so on. One way to get such a structure, is by
replacing X by a cosimplicial object or Y by a simplicial object. Therefore, there are
multiple paths to make it a simplicial set.

The first way gives the notion of a left homotopy function complex. We take a cosim-
plicial resolution for X and we replace Y by a fibrant object, and then we can construct
the mapping space.

Definition 3.4.2 (Left Homotopy Function Complex). LetM be a model category and
let X and Y be objects. For any cosimplicial resolution Γ ∗ of X and fibrant approximation
bY of Y we say that the simplicial set

Map(X , Y )n =M (Γ n, bY )

is a left homotopy function complex from X to Y .

Dually, we can define right homotopy function complexes, but for that we need a
dual notion of cosimplcial resolution. For a cosimplicial resolution we look atM∆, so
for a simplicial resolution we look atM∆op

.

Definition 3.4.3 (Simplicial Resolutions). Let X be an object of a model categoryM .
Then a simplicial resolution is a Reedy fibrant object Γ inM∆op

with a degreewise weak
equivalence Γ → c∗(X ) where c∗(X ) is the constant simplicial object.

Now we have enough to define right homotopy function complexes.
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Definition 3.4.4 (Right Homotopy Function Complex). Suppose that we have a model
categoryM and objects X and Y . For any cofibrant approximation eX of X and simplicial
resolution Γ of Y we say that the simplicial set

Map(X , Y )n =M (eX , Γn)

is a right homotopy function complex from X to Y .

But there is also a third way, because we can also take a cosimplicial resolution for
X and a simplicial resolution for Y . That way we get a bisimplicial set, and its diagonal
will be the two-sided homotopy function complex.

Definition 3.4.5 (Two-Sided Homotopy Function Complex). Given are a model cate-
goryM and objects X and Y . Also, suppose we have any cosimplicial resolution Γ of
X and a simplicial resolution Γ ′ of Y . Then the diagonal of the bisimplicial set defined
as

Map(X , Y )n,m =M (Γ n, Γ ′m)
is said to be a two-sided homotopy function complex from X to Y .

Now we define a homotopy function complex from X to Y to be either a left ho-
motopy function complex, right homotopy function complex or a two-sided homotopy
function complex from X to Y . One important property of homotopy function com-
plexes is that we can detect weak equivalences with them.

Proposition 3.4.6. LetM be a model category and let g : A→ B be a map. Then g is a
weak equivalence iff for every fibrant object X the map Map(A, X )→Map(B, X ) is a weak
equivalence of simplicial sets.

For the proof of this proposition we refer the reader to Theorem 17.7.7 in [Hir00].
This proposition will be the basis of defining Bousfield localizations. Some objects
might detect all maps in the set S to be weak equivalences, and these objects will are
called S-local. So, a fibrant object X is called S-local iff for all maps g : A→ B in S the
map Map(A, X )→Map(B, X ) is a weak equivalence of simplicial sets. The point is that
the S-local objects determine the weak equivalences in the localized model category.
A S-local equivalence is a map g : A → B such that for all S-local objects the map
Map(A, X )→Map(B, X ) is a weak equivalence.

Definition 3.4.7 (Left Bousfield S-localization). Let M be a model category, and let
S be a set of maps inM . Then a left Bousfield S-localization of M is a model category
M/S with the same objects and cofibrations asM and whose weak equivalences are
the S-local equivalences.

Left Bousfield S-localizations are indeed S-localizations, but they do not have to
exist. However, in many examples they do exist. and their is a check for their existence.

Definition 3.4.8 (Left Proper). A model category in which the pushout of a weak equiv-
alence along a cofibration is again a weak equivalence, is called left proper.

More concretely, for a weak equivalence g : A→ B and cofibration i : A→ C we
have a pushout diagram

A

g

��

i // C

eg
��

B
ei
// P
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and the requirement is that eg is a weak equivalence. A model category in which all
objects are cofibrant, is left proper by Proposition 13.1.2 in [Hir00]. So, if the cofi-
brations are the monomorphisms, then the model category is automatically left proper.
This already gives that the category of simplicial sets is left proper.

Another example of a left proper model structure is the projective mode structure.
If M is combinatorial and left proper, then MD is left proper. In functor categories
pushouts are done pointwise, and weak equivalences are defined pointwise. If we show
that every projective cofibration is a pointwise cofibration, then it directly follows that
it is left proper. The reason for this is that all generating cofibrations, as defined in
Example 3.1.5, are pointwise cofibrations.

Now we can give an existence theorem for left Bousfield S-localizations.

Theorem 3.4.9. LetM be a combinatorial left proper model category and let S be a set
of maps inM . Then a left Bousfield S-localization ofM exists.

We will not prove this theorem, and for a proof we refer the reader to [Hir00].





CHAPTER 4

Presentations of Model Categories

The main goal of this chapter is to discuss two articles written by Dugger [Dug01c,
Dug01a], and after that we discuss an application given in [DHI04]. The theorems
discussed in these articles basically are analogues of several theorems in ordinary cat-
egory theory and topos theory which tells us something about the structure of certain
classes of categories. In ordinary category theory, we have the notion of a locally pre-
sentable category, and in Chapter 2 we discussed a theorem which says that all locally
presentable categories are reflective subcategories of certain presheaf categories. Also,
Giraud’s theorem in topos theory tells us that toposes are reflective subcategories of
presheaf categories where the left adjoint preserves finite limits. Dugger’s theorem is
an analogue of these theorems, but it is for combinatorial model categories rather than
ordinary categories. To prove and even state this theorem, we need to translate sev-
eral ordinary concepts into homotopical concepts. For example, in ordinary category
theory the presheaf category can be seen as the cocompletion of a small category. To
translate this into homotopical language, we need to change several of the concepts
involved. Colimits should become homotopy colimits, and sets should become simpli-
cial sets. Also, diagrams will not be required to commute on the nose, but rather up to
homotopy. This is basically the idea for translating the theorem and turning it into a
theorem about model categories.

The reason why we are interested in this theorem, is because it allows for a nice
description of model categories. From this theorem it will follow that every combina-
torial model category is equivalent to one that is simplicial, proper, and in which all
objects are cofibrant. In simplicial model categories we can compute homotopy colim-
its using the Bousfield-Kan formula from [BK87], so the study of homotopy colimits
reduces to the simplicial case. Before this theorem, there was an alternate proof given
in [Dug01b] that every left proper combinatorial model category is equivalent to a
simplicial category. The newer result thus improves on it by weakening the assump-
tions. Another nice application of this theorem is given in [DHI04]. There are several
possible model structures for the category of simplicial sheaves, for example the Jar-
dine model structure. Here cofibrations are defined to be the monomorphisms, weak
equivalences are defined locally, and the fibrations are defined using lifting properties.
The nice thing about this model structure is that all objects are cofibrant. However, the
disadvantage is that it is rather difficult to determine the fibrant objects, because the
fibrations do not have a nice description. By replacing this model category by a nicer
one, the fibrant objects can be described in a nicer way.

41
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4.1. Universal Model Categories

The first part of the result is given in [Dug01c], and it says that the category of
simplicial presheaves with the projective model structure is the homotopical cocomple-
tion of a small category. The result from ordinary category we would like to translate
is the following

Theorem 4.1.1. Let C be a small category, and let F : C → D be a functor. Then there
is a unique functor G : Pre(C )→ D which preserves all small colimits and such that the
following diagram commutes

C F //

y

��

D

Pre(C )
G

;;

The functor G also has a right adjoint.

For a homotopy theoretic analog we need to translate several things. As given data
we will have a small category C and a functor F : C → M to a model category M .
First of all, we need a replacement for Pre(C ) = SetsC

op
in the homotopy theoretic

world. The category of sets does not really have a nice model structure, and that is
why it needs to be replaced. A rule of thumb we use here is that simplicial sets replace
sets in homotopy theory, so instead of presheaves we will use simplicial presheaves.
The category SSetC

op
with natural transformations has multiple possible model struc-

tures like the projective model structure in Example 3.1.5 or the Reedy model structure
from Example 3.1.7, and here we will use the projective model structure. Beside the
upcoming theorem, there is another reason why simplicial sets are the homotopic ana-
logue of sets. Presheaves are colimits of representables, and simplicial presheaves are
homotopy colimits of representables. So, in homotopy theory simplicial presheaves be-
have just like presheaves. As expected we have a map r :C → SPre(C ) which is given
by the composition C → Pre(C )→ SPre(C ). We can map from C to Pre(C ) via the
Yoneda embedding, and we can map Pre(C ) to SPre(C ) by mapping a presheaf F to
the simplicial presheaf eF which is defined in X the constant simplicial set F(X ).

Secondly, the commutativity of the diagram will be weakened. Instead of saying
that it commutes, we want to say that it commutes up to homotopy. However, this might
cause the factorization not to be unique, and that is why we need an extra requirement.
This requirement should say that the factorization is unique up to homotopy, and stating
this requires some setup. We can form a category where the objects are tuples (L, R,η)
where L a R is a Quillen pair with L : SPre(C ) → M : R and η is a natural weak
equivalence from L ◦ r to F . Such data can be visualized as follows

C
�� η

F //

r
��

M

SPre(C )
L

::
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The arrows from (L, R,η) to (L′, R′,η′) are given by natural transformations θ : L⇒ L′

such that the following diagram commutes

L(r(X ))
θX //

ηX
$$

L′(r(X ))

η′Xzz

F(X )

This category is called the category of factorizations and is denoted by FactM (γ).
Lastly, let us recall the notion of a contractible category. In Chapter 3 we said that

a category C is contractible iff the realization of its nerve is a contractible topological
space. There are many examples of categories which are contractible, and one way
to find them, is by finding a terminal object. If a category C has a terminal object
1, then we have a natural transformation η from the identity functor to the constant
functor 1. Recall that ∆1 is the category with two objects 0 and 1 and one arrow from
0 to 1. Natural transformations F ⇒ G where F, G : C → D correspond to natural
transformations η : ∆1 ×C → D such that η(0, C) = F(C) and η(1, C) + G(C). Now
|N (η)| gives a homotopy from the identity, and thus |N (C )| is contractible. Similarly,
if C has an initial object, then it is contractible as well. Using all this we can formulate
the goal of this section

Theorem 4.1.2. Let C be a small category, letM be a model category, and let F : C →
M . Then there is a Quillen pair L : Pre(C ) → D : R and a natural weak equivalence
η : L ◦ γ⇒ y such that the following diagram commutes up to η

C
�� η

F //

r
��

M

SPre(C )
L

::

Furthermore, the category FactM (γ) is contractible.

The main tools to prove this theorem are cosimplicial resolutions. Recall that in
Chapter 3 we defined the notion of a cosimplicial resolution in Definition 3.3.2, and
using Quillen’s small object argument we proved that cosimplicial always exist. The
crucial point of the proof is that cosimplicial resolutions of the map F : C →M cor-
respond to factorizations. Then the proof is reduced to working with cosimplicial res-
olutions, and for them we can prove the desired properties. For example, we can show
that a cosimplicial resolution exists, and that the category of cosimplicial resolutions is
contractible. From this Theorem 4.1.2 follows directly.

Proposition 4.1.3. The category of cosimplicial resolutions of γ is contractible.

The proof of this proposition is rather long and technical, and for a proof we refer
the reader to Proposition 16.1.15 in [Hir00]. The next proposition says that giving a
cosimplicial resolution of γ is the same as factoring γ.

Proposition 4.1.4. For a diagram γ : C → M in a model category M we have an
equivalence of categories

coRes(γ)' FactM (γ).
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PROOF. Recall that in Section 3.3 we defined the operation ⊗∆ for cosimplicial
resolutions γ and simplicial sets K as follows

K ⊗∆ γ= coeq

 

∐

[k]→[m]

Km · γk⇒
∐

n

Kn · γn

!

.

For this operation we haveM (K ⊗∆ γ, W ) ∼= SSet(K ,M (γ∗, W )) whereM (γ∗, W )) is
the simplicial set which isM (γn, W )) in degree n. The reason for this is as follows. A
map K →M (γ∗, W ) of simplicial sets corresponds with maps Kn →M (γn, W ) which
make certain diagrams commute. But a map Kn→M (Xn, W ) corresponds with a map
Kn · Xn → W inM , because every element in K gets mapped to a map Xn → W . We
know more, namely that the map K →M (γ∗, W ) is a map of simplicial sets which says
that for any arrow [m]→ [n] the following diagram commutes

Km
//

��

M (γm, W )

��

Kn
//M (γn, W )

This diagram gives another diagram, which should commute as well, namely

Km · Xm

##

Km · Xn
//

OO

��

W

Kn · Xn

;;

These arrows are precisely the arrows in the coequalizer of K ⊗∆ γ, and that is why a
map in SSet(K ,M (γ∗, W )) corresponds to a mapM (γ⊗∆ K , W ).

The next notation we introduce for this proof is ⊗C which is defined for diagrams
Γ :C → cM and simplicial presheaves F :C op→ SSet as follows

F ⊗C Γ = coeq

�

∐

a→b

F(b)⊗∆ Γ (a)⇒
∐

c

F(c)⊗∆ Γ (c)

�

.

Here the first coproduct is over all arrows a→ b in C and the second coproduct is over
all objects in C . Note the similarity between this formula and the formula for ⊗∆, and
in a similar way we can show that M (F ⊗C Γ , W ) ∼= SSetC

op
(F,M (Γ , W )) where we

defineM (Γ , W ) to be the presheaf c 7→M (Γ (c), W ).
Let us denote the representable functors of Pre(C×∆) by rX ,n, and note that r(X ) =

rX ,0 For ⊗C we have a property similar to Proposition 3.3.4 which says that rX ,n⊗C Γ ∼=
Γ (X )n. The proof of these two are similar, because it only depend on the definition of the
representables. Now we have the required notation to define the functors. Let us start
with a factorization L a R with a natural weak equivalence η : L(r(X ))→ γ(X ). Then
we define G((L, R,η))n = L(rX ,n). For a cosimplicial resolution Γ we need to define
H(Γ ) = (L, R,η). We define L(F) = F ⊗C Γ and R(X )(c) = M (Γ ∗(c), X ). Note that
L a R, becauseM (F ⊗C Γ , W ) ∼= SSetC

op
(F,M (Γ , W )) and thus this is an adjunction.

The only thing missing now is a natural weak equivalence L(r(X ))→ γ(X ). This can
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be found using the fact that

L(r(X )) = r(X )⊗C Γ = rX ,0 ⊗C Γ ∼= Γ (X )0,

and the fact we have a weak equivalence Γ (X )0→ γ(X ).
To check that this is an equivalence, we need to check two things. First of all, we

need to check that Γ (X )n is naturally isomorphic to rX ,n⊗C Γ . This is the case, as we said
earlier. For the other check we write Γ (X )n = L(rX ,n), and now we need to check that
L(F)∼= F⊗C Γ . LetC ×∆ ↓ F be the category whose objects are tuples (n, X , rX ,n→ F),
and let define a functor I which sends such a tuple to rX ,n→ F . The colimit of I is equal
to F , because presheaves are colimits of representables. Write Γ ′ for the cosimplicial
object Γ ′(X )n = rX ,n, and now we have

F = colimI (rX ,n)

= colimI Γ
′(X )n

= colimI (rX ,n ⊗C Γ ′)

= (colimI rX ,n)⊗C Γ ′

= F ⊗C Γ ′

Because L is a left adjoint, it commutes with colimits, so we get L(F) = L(F ⊗C γ′) =
F ⊗C L(Γ ′) = F ⊗C Γ . �

The next property we need is an analogue of the categorical fact that every presheaf
is a colimit of representables. This is a bit more complicated for simplicial presheaves,
because they have multiple degrees.

Proposition 4.1.5. Let F be a simplicial presheaf on C . Define a functor L : C ×∆→
Pre(C × ∆) sending (C , n) to rC ,n, and write the homotopy colimit of this functor as
hocolim(C × ∆ ↓ F). Then the natural arrow hocolim(C × ∆ ↓ F) → F is a weak
equivalence.

We will not prove this in detail, but rather give a sketch. The first main point is to
reduce it to simplicial sets, and that can be done, because weak equivalences are defined
pointwise and homotopy colimits are computed pointwise. Therefore, it is sufficient to
show that the arrow hocolim(rX ,n(C))→ F(X ) is a weak equivalence.

For this we define two categories. First, we define a category ∆(X , F) whose ob-
jects are pairs ([n], rX ,n → F), and we define a functor G : ∆(X , F) → SSet sending
([n], rX ,n → F) to ∆[n]. One can show that the colimit of this diagram is F(X ), and
that the map hocolim∆(X ,F) G→ F(X ) is a weak equivalence.

Let I be the category with objects (C , [n], yC ,n → F). Next we define Θ : I → Sets
to be the functor which maps (C , [n], yC ,n → F) to C (X , C). For this functor we can
consider the Grothendieck construction Gr(Θ). We define Gr(θ ) to be the category with
objects (i,σ) where i is an object of I and σ ∈ Θ(i). Arrows from (i,σ) to ( j,τ) are
maps f : i → j such that Θ( f )(σ) = τ. Now let H : Gr(θ ) → SSet be the functor
sending (C , [n], yC ,n → F) to ∆[n]. By Corollary 24.6 from [CS01] we have a weak
equivalence hocolimGr(Θ)→ hocolim(rX ,n(C)).

Lastly, we can define a functor ∆(X , F)→ Gr(Θ) sending ([n], rX ,n → F) to (i,σ)
with i = (X , [n], rX ,n → F) and σ = Id : X →. This gives a map hocolim∆(X ,F) G →
hocolimGr(θ ) H which has a retraction. One can show that its retraction is cofinal, and
therefore the map hocolim∆(X ,F) G→ hocolimGr(θ ) H is a weak equivalence.
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All in all, we get the following diagram

hocolim∆(X ,F) G //

,,

hocolimGr(θ ) H // hocolim(rX ,n(C))

��

F(X )

As said before, all arrows but the vertical one are weak equivalences, and thus by the
2-out-of-3 property we can conclude that the arrow hocolim(rX ,n(C))→ F(X ) is a weak
equivalence as well.

4.2. Presentations of Model Categories

Using the universal model category we formulate and prove the required analogue
of Giraud’s theorem

Theorem 4.2.1. LetM be a combinatorial model category. Then there is a small category
C and a set of maps S in SPre(C ) such that the induced map L : SPre(C )→M sends
maps in S to weak equivalences inM and SPre(C )/S→M is a Quillen equivalence.

The localization SPre(C )/S is a Bousfield localization and it exists, because the
model category of simplicial presheaves is proper and combinatorial.

The proof of Theorem 4.2.1 is done in two steps, and it mimics the theorem that
every abelian group has a free presentation. Recall that to prove that an abelian group
has a free presentation, we first find the generators and then we find the relations. For
model categories we do the same things. First, we find the generators, so we look for a
small category C and a ‘surjective’ map SPre(C )→M . Here we need a special notion
of surjectivity which will be defined in Definition 4.2.2. The next step will thus be to
find relations, so we look for a set S such thatM is Quillen-equivalent to SPre(C )/S.
Let us start with giving the right notion of surjectivity for this proof.

Definition 4.2.2 (Homotopically Surjective). Let L :M →N be a left Quillen functor
with right adjoint R.. Then we say L is homotpically surjective iff for all fibrant objects X

and cofibrant replacements Y ∼ //R(X ) the composition map L(Y )→ L(R(X ))→ X
is a weak equivalence.

This says that the left derived functor of L has a section, namely R. The idea is that
we do not want to say that L is surjective, but rather that it is surjective in the homotopy
category. Hence, we have to look at derived functors, and this definition says that LL
is surjective.

For the proof we need two steps which are given in the following propositions, and
the proof of them will require the rest of this section.

Proposition 4.2.3. Let M be a combinatorial model category. Then there is a small
category C and a homotopically surjective map SPre(C )→M .

Proposition 4.2.4. Let M and N be combinatorial model categories such that M is
left proper, and suppose that we have a functor L : M → N which is homotopically
surjective. Then there is a set S of maps which becomes weak equivalences under LL such
thatM/S→N is a Quillen equivalence.

If we can prove these two propositions, then Theorem 4.2.1 follows immediately.
Let us start with the second proposition, because it is easier. To prove it, we need one
technical lemma.
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Lemma 4.2.5. LetM be a combinatorial model category. Then there is a cardinal number
λ such that

(i) There are fibrant and cofibrant replacement functors which preserve λ-filtered
colimits.

(ii) λ-filtered colimits of weak equivalences are again weak equivalences.
(iii) The cofibrant and fibrant replacement of λ-small objects is again λ-small.

PROOF. The first follows by closely inspecting Quillen’s small object argument. The
main point is that colimits commute with colimits, but there is one subtlety. If α is an
ordinal, and we would like to construct Xα+1, then we looked at all diagrams of the
form

A //

��

Xα

��

B // Y

with A and B are λ-small. If Xα and Y can be written as a λ-filtered colimit, say Xα =
colimβ X ′(β) and Y = colimβ Y ′(β), then this dagram can be written as the colimit of
the diagrams

A //

��

X ′
β

��

B // Y ′
β

Therefore, the constructed functor commutes with λ-filtered colimits.
Next we show that the λ-filtered colimit of weak equivalences is again a weak

equivalence for λ sufficiently large. Let λ be an ordinal such that the functorial factor-
izations preserve λ-filtered colimits andM is generated by λ-small objects. Suppose
we have two diagrams D1, D2 : I →M with I a λ-filtered category, and a natural trans-
formation η : D1⇒ D2 where each ηi is a weak equivalence. For each object i of I we
can factorize ηi as follows

D1(i)
ηi //

fi ""

D2(i)

eD(i)

pi

<<

with fi a trivial cofibration and pi a fibration. For colim D1 → colim D2 we can get a
factorization into a trivial cofibration followed by a fibration by taking the λ-filtered
colimit of the fi , so the map colim fi is a trivial cofibration. Since the functorial fac-
torizations preserve λ-filtered colimits by the choice of λ, we thus get the following
factorization

colim D1
colimηi //

colim fi %%

colim D2

colim eD
colim pi

99
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This factorizes the map colimηi in a trivial cofibration followed by a fibration. Thus, to
show colimηi is a weak equivalence, it suffices to show that colim pi is a weak equiva-
lence. Each pi is a weak equivalence by the 2-out-of-3 property, and thus it suffices to
show that the λ-filtered colimit of trivial fibrations is again a trivial fibration.

To check whether a map is a trivial fibration, we can check that it satisfies the
right lifting property with respect to the generating cofibrations. Let g : A→ B be a
generating cofibration between λ-small objects. Consider the following diagram

A

g

��

// colim X

colim pi

��

B // colim Y

Since A is λ-small, the map A→ colim X factors through some X i . Also, B is λ-small as
well, and thus the B→ colim Y factors through some Yj . Taking m to be the maximum
of i and j, the map A→ colim X factors through Xm and the map B → colim Y factors
through Ym. Now we have the following diagram

A

g

��

// Xm
//

fm

��

colim X

colim fi

��

B // Ym
// colim Y

We can find a lift B → Xm, because fm is a trivial fibration and A→ B is a cofibration.
This gives a lift for the original lifting problem, and from this we can conclude that the
λ-filtered colimit of trivial fibrations is again a trivial fibration. All in all, the λ-filtered
colimit of weak equivalences is again a weak equivalence.

Lastly, we need to show that the cofibrant replacement and the fibrant replacement
of a λ-small object is again λ-small. We shall show that for the cofibrant replacement,
because for the fibrant replacement a similar argument can be given. Pick an ordinal
λ such thatM is generated by a set S of λ-small objects and such that the functorial
factorization preserves λ-filtered colimits. Note that there is only a set of maps between
objects of S, because M is locally small. We can factorize all these maps using the
functorial factorizations, and this gives a set T of objects. Every object in T is small,
and thus there is a an ordinal ν such that the factorization of a map between objects in
S gives a ν-small object.

Let µ be larger than both λ and ν. We claim that µ is the required ordinal, and
for that we take a map A→ B between µ-small objects. By local presentability we can
write A= colim Aα and B = colim Bβ where the colimits are λ-filtered and each Aα and
Bβ is λ-small. A map X → Y thus correspond with maps Xα → Y for every α, and
using the smallness of Xα this corresponds with maps Xα→ Yβ(α). Hence, we can write
X → Y as a λ-filtered colimit of maps Xα→ Yα between λ-small objects.

To factorize X → Y , we factorize Xα→ Yα as Xα→ eXα→ Yα. By the construction of
ν, the objects eXα are ν-small. Now we can factorize X → Y as X → colim eXα→ Y , and
note that colim eXα is a λ-filtered colimit of ν-small objects where the diagram has size
µ. Since µ is both larger than ν and λ, we get that it is a µ-filtered colimit of µ-small
objects on a diagram of size µ. Now it follows from Proposition 1.16 from [AR94] that
it is a µ-small object. �

Now we can prove Proposition 4.2.4 with this lemma, and before we give the
precise proof, we give a sketch. The main idea of this proof is that we want to turn
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the functor into a Quillen equivalence, and that means that certain maps have to
be weak equivalences. By Proposition 2.1.3 it is sufficient to check that the maps

X
ηX //R(L(X )) //R([L(X )]Fib) and L([R(Y )]Cof) // L(R(Y ))

εY //Y are weak
equivalences for all cofibrant X and fibrant Y . Because L is homotopically surjective,
the maps L(Y )→ L(R(X ))→ X are weak equivalences where Y is a cofibrant replace-

ment of R(X ). We want to localize the maps X
ηX //R(L(X )) //R([L(X )]Fib) , but

these maps might not form a set. Hence, we look at a set of small objects which gen-
erate the model category. Then only some minor technical problems are left which can
be solved by choosing λ big enough.

PROOF OF PROPOSITION 4.2.4. We start by choosing λ big enough such that

(1) M is generated by a set S of λ-small objects.
(2) λ-filtered colimits of weak equivalences are again weak equivalences.
(3) The cofibrant and fibrant replacement functors preserve λ-filtered colimits.
(4) The right adjoint R preserves λ-filtered colimits.

For (1) we use the assumption that M is combinatorial. For (2) and (3) we use
Lemma 4.2.5, and for the last we use Proposition 1.66 from [AR94]. The set to which
we localize is then defined as

T = {ACof→ R([L(ACof)]Fib) | A∈ S}

To finish the proof, we need to check some things. First of all, we need to check that
all maps in T are send to weak equivalences by the left derived functor of L. This will
give a functor eL : M/S → N , and we claim eL is a Quillen equivalence. For that we
use Proposition 2.1.3 which will follow from the assumption that L is homotopically
surjective and from the definition of T .

Now let us do all those checks. First we check that for A ∈ S the map L(ACof) →
L([R([L(ACof)]Fib)]Cof) is a weak equivalence. For that we look at the diagram

[L(ACof)]Fib //

((

--

L([R([L(ACof)]Fib)]Cof)

∼
��

// L(R([L(ACof)]Fib))

ε
uu

[L(ACof)]Fib

The arrow L([R([L(ACof)]Fib)]Cof)→ L(ACof) is a weak equivalence, because L is homo-
topically surjective. Also, if we denote the weak equivalence L(ACof)→ [L(ACof)]Fib as
i, then the arrow L(ACof) → L(R([L(ACof)]Fib)) is precisely L(R(i) ◦ η), so the compo-
sition L(ACof) → [L(ACof)]Fib is the weak equivalence ε ◦ L(R(i) ◦ η) = i. Hence, by
the 2-out-of-3 property the map [L(ACof)]Fib→ L([R([L(ACof)]Fib)]Cof) is indeed a weak
equivalence.

Note that eL is homotopically surjective. Since the Bousfield localizationM/T has
the same objects asM , we need to check that for every fibrant object X and cofibrant

replacements Y ∼ //R(X ) the composition map L(Y )→ L(R(X ))→ X is a weak equiv-
alence. But weak equivalences inM are weak equivalences inM/T , so all these maps
are indeed weak equivalences.

Lastly, we check that eL is a Quillen equivalence. Let X be cofibrant and let Y be
fibrant. Because eL is homotopically surjective, the map eL(([eR(Y ))]Cof)→ Y is a weak
equivalence. Next we check that the X → R([L(X )]Fib) are weak equivalences, and for
that we write X as colimI Ai where I is λ filtered. All maps ACof

i → R([L(ACof
i )]

Fib) are
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weak equivalences, and all involved functors commute with λ-filtered colimits. Since
weak equivalences are closed under λ-filtered colimits, the map X Cof→ R([L(X Cof)]Fib)
is a weak equivalence. Hence, eL is indeed a Quillen equivalence and this proves the
proposition. �

Next we shall prove the more difficult proposition which finds the generators. The
important thing here is that tthe category of simplicial presheaves on C can be seen as
the free homotopy colimit completion of C , so every simplicial presheaf is a homotopy
colimit of r(C) with C an object of C . So, if we find a small category C and a map
F : C → M such that we can write every object in M as homotopy colimit of the
F(C), then we would expect thatM is equivalent to SPre(C ) with possibly some extra
relations. More precisely, note that the inclusion C →M gives a map SPre(C )→M ,
and by the previous argument we expect that the latter map would be homotopically
surjective.

Since M is locally presentable, we have an obvious choice of the generators. By
definition every object ofM there is a set of λ-small objects such that every object of
M can be written as a colimit of these λ-small objects. However, this does not turn
out to be sufficient, and the problem is that it ignores higher homotopies. The solution
is to add these higher homotopies by taking a cosimplicial resolution, and we take
the generators to be everything occurring in this cosimplicial resolution. Hence, our
generators are not just the λ-small objects, but also their higher homotopies.

Now there is a minor problem: how do we recognize whether everything can be
written as a homotopy colimit of the generators? For that we take inspiration from
the proof that every presheaf is a colimit of representables. When proving that every
presheaf is the colimit of representables, we use the Yoneda embedding C → Pre(C ).
To write an arbitrary presheaf F as a colimit of the y(C), we look at a certain overcate-
gory, namelyC ↓ F . The objects of this category are natural transformations y(C)→ F ,
and the arrows are commutative diagrams of the following form

y(C)
y( f )

//

!!

y(C ′)

}}
F

where f is an arrow from C ′ to C . This can be seen as a canonical way of writing F
as a colimit of representables, because if it would be possible, then this colimit would
work. Translating this into homotopy theorem gives the following definition

Definition 4.2.6. Let C be a category, and let a functor γ : C → M into a model
category be given. Given an object X ofM , define a category C ↓ X where objects are
arrows γ(C)→ X and arrows commutative diagrams. We write hocolim(C ↓ X ) for the
homotopy colimit of this diagram.

This definition is problematic in a certain way. As said before the generators will
be everything in the cosimplicial resolution of the γ, but this colimit does not take this
cosimplicial resolution into consideration. To correct this, we introduce the notion of a
canonical homotopy colimit which is almost the same.

Definition 4.2.7 (Canonical Homotopy Colimit). Let C be a category, let a functor
γ : C → M into a model category be given, and let Γ : C → cM be a cosimpli-
cial resolution of γ. Given a fibrant object X of M , define a category C × ∆ ↓ X
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where objects are arrows Γ n(C) → X and arrows commutative diagrams. We write
hocolim(C × ∆ ↓ X ) for the homotopy colimit of this diagram, and it is called the
canonical homotopy colimit.

It is not obvious to prove that this is well-defined, so that it does not depend on
the chosen cosimplicial resolution. To prove this, we will need the assumption that X is
fibrant. Note that for each cosimplicial resolution Γ we can define hocolim(C ×∆ ↓ X )
as in Definition 3.3.5.

Beside the fact that the canonical homotopy colimit takes the cosimplicial resolu-
tion into consideration, there is another reason why this notion is important. Namely,
we can recognize with it whether maps SPre(C ) → M are homotopically surjective.
The statement says that such a map is homotopically surjective precisely when all
canonical homotopy colimits hocolim(C ×∆ ↓ X ) are weakly equivalent to X . This
follows from the following proposition

Proposition 4.2.8. Let L : SPre(C ) ↔ M : R be induced by Γ . Then the object
L([R(X )]Cof) and hocolim(C ×∆ ↓ X ) are weakly equivalent.

PROOF. We have shown in the previous section that hocolim(C ×∆ ↓ F) → F is
a cofibrant approximation of the presheaf F . In particular, hocolim(C ×∆ ↓ R(X ))→
R(X ) is a cofibrant approximation of R(X ). To compute L([R(X )]Cof), we use this for-
mula, and this gives that L([R(X )]Cof) and L(hocolim(C ×∆ ↓ R(X ))) are weakly equiv-
alent.

Let us briefly recall the objects of the involved categories. The objects of C ×∆ ↓
R(X ) are arrows rC ,n→ R(X ) and the objects of C ×∆ ↓ X are arrows Γ n(C)→ X . For
both categories the arrows are commutative triangles in the obvious way. By adjunction
arrows rC ,n → R(X ) correspond with arrows L(rC ,n)→ X , and remember that we saw
that L(rC ,n) and Γ n(C) are isomorphic in the proof of Proposition 4.1.4. Hence, the
categories C ×∆ ↓ R(X ) and C ×∆ ↓ X are isomorphic.

Since L is a left adjoint, it preserves colimits and thus it preserves homotopy col-
imits as well. For L(hocolim(C ×∆ ↓ R(X ))) we get a homotopy colimit over a cat-
egory isomorphic to C × ∆ ↓ X and we get a pointwise weak equivalence. Hence,
L(hocolim(C × ∆ ↓ R(X ))) and hocolim(C × ∆ ↓ X ) are weakly equivalent which
proves the proposition. �

Note that we have the following diagram now

hocolim(C ×∆ ↓ X ) ∼ //

''

L(R(X )Cof)

zz
X

From the 2-out-of-3 property follows that hocolim(C ×∆ ↓ X )→ X is a weak equiva-
lence iff L(R(X )Cof)→ X is a weak equivalence. The second of these two just says that
L is homotopically surjective, and thus we get

Corollary 4.2.9. Let γ : C → M be a functor and let Γ : C → cM be a cosimplicial
resolution of γ. Then the induced map SPre(C ) → M is homotopically surjective iff
hocolim(C ×∆ ↓ X )→ X is a weak equivalence for all fibrant objects X .

From this we can conclude that the canonical homotopy colimit is indeed well-
defined.
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Corollary 4.2.10. If we have a weak equivalence X → Y with both X and Y fibrant, then
hocolim(C ×∆ ↓ X ) and hocolim(C ×∆ ↓ Y ) are weakly equivalent.

PROOF. We showed that hocolim(C ×∆ ↓ X ) and L([R(X )]Cof) are weakly equiv-
alent, and that hocolim(C ×∆ ↓ Y ) and L([R(Y )]Cof) are weakly equivalent. Recall
that by Proposition 2.1.8 left Quillen functors preserve weak equivalences between
cofibrant objects, and that we can show similarly that R preserves weak equivalences
between fibrant objects. Since X and Y are fibrant and we have a weak equivalence
X → Y , we get a weak equivalence R(X )→ R(Y ). Then we also get a weak equivalence
R(X )Cof → R(Y )Cof, and since both objects are cofibrant, we get a weak equivalence
L([R(X )]Cof)→ L([R(Y )]Cof). �

Corollary 4.2.11. Let Γ and Γ ′ be two cosimplicial resolutions for γ. Note that Γ induces
an adjunction L a R and that Γ ′ gives an adjunction L′ a R′. Then L([R(X )]Cof) and
L′([R′(X )]Cof) are weakly equivalent for fibrant objects X meaning that there is a zig-zag
of weak equivalences between them.

PROOF. Since the category of cosimplicial resolutions is contractible by Proposi-
tion 4.1.3, we can find a zig zag Γ0, . . . , Γn of maps between Γ = Γ0 and Γ ′ = Γn. Suppose
that fi : Γi → Γi+1, and then we can look at the diagram

Γi
//

∼
##

Γi+1

∼
zz

c∗(γ(−))

By the 2-out-of-3 property we can now conclude that the map Γi → Γi+1 is a weak
equivalence, and thus without loss of generality we can assume that we have a weak
equivalence Γ → Γ ′.

Recall that by the proof of Proposition 4.1.4 we have L(F) = F ⊗C Γ and that
L′(F) = F⊗C Γ ′. Also, from the same proof we can conclude that R(X )(c) =M (Γ ∗(c), X )
and that R′(X )(c) = M ((Γ ′)∗(c), X ). From Corollary 16.5.5 in [Hir00] follows that
R(X ) and R′(X ) are weakly equivalent for fibrant X , and from Corollary in [Hir00] it
follows that L(F) and L′(F) are weakly equivalent for cofibrant F . Concluding, all the
maps in the following diagram are weak equivalences

L([R′(X )]Cof) //

��

L([R(X )]Cof)

��

L′([R′(X )]Cof) // L′([R(X )]Cof)

Hence, L([R(X )]Cof) and L′([R′(X )]Cof) are weakly equivalent �

Combining Proposition 4.2.8 and corollary 4.2.11 we can conclude that the canoni-
cal homotopy colimit is well-defined for fibrant objects X . However, the disadvantage of
the canonical homotopy colimit is that we can work more easily with hocolim(C ↓ X ),
because it does not involve a cosimplicial resolution of γ. Therefore, we would like to
know when these two are equivalent, and this answered by the following proposition.
Basically, it says that if all the higher homotopies are equivalent to the original, then
hocolim(C ↓ X ) and hocolim(C ×∆ ↓ X ) agree.



4.2. PRESENTATIONS OF MODEL CATEGORIES 53

Proposition 4.2.12. Let γ : C →M be a functor which maps into the cofibrant objects
of M . Suppose that X is a fibrant object, and write C n ↓ X for the category where the
objects are Γ n(C)→ X and the arrows are commutative triangles. If hocolim(C 0 ↓ X )→
hocolim(C n ↓ X ) is a weak equivalence for all n, then also the map hocolim(C ↓ X )→
hocolim(C ×∆ ↓ X ) is a weak equivalence.

The proof of this proposition is rather complicated, and for its proof we refer the
reader to [Dug01a]. This gives us a method to compare these two homotopy colimits,
and this will be very useful. It is much simpler to recognize whether hocolim(C ↓ X ) is
equivalent to something than to recognize whether hocolim(C ×∆ ↓ X ) is equivalent
to it.

Since combinatorial model categories are locally presentable, they have generators.
In a local presentable categoryC every object X can be written as a λ-filtered colimit of
the generators, namely we can write it as colim(Cλ ↓ X )whereC is the full subcategory
of λ-small objects of C . The following proposition is a direct analogue of this result.

Proposition 4.2.13. LetM be a combinatorial model category. Then there is a cardinal
number λ such that for all objects X

• hocolim(Mλ ↓ X )→ X is a weak equivalence;
• hocolim(M cof

λ
↓ X )→ X is a weak equivalence.

PROOF. To prove that hocolim(Mλ ↓ X )→ X is a weak equivalence, we note that
we have a natural maps hocolim(Mλ ↓ X )→ colim(Mλ ↓ X )→ X . SinceM is locally
presentable, we can find a λ such that colim(Mλ ↓ X ) → X is an isomorphism. The
map hocolim(Mλ ↓ X )→ colim(Mλ ↓ X ) is a λ-filtered colimit of weak equivalences,
because the homotopy colimit is the left derived functor of the colimit. By Lemma 4.2.5
we can take λ such that λ-filtered colimits of weak equivalences are again weak equiva-
lences, and this makes the map hocolim(Mλ ↓ X )→ colim(M ↓ X ) a weak equivalence.
Hence, the composition hocolim(Mλ ↓ X )→ X is a weak equivalence too.

To check the second statement, we apply Proposition 3.3.6. We have to show that
hocolim(Mλ) and hocolim(M Cof

λ
) are equivalent, and for that we first need to make

an equivalence between the indexing categories. By Lemma 4.2.5 we have a cofi-
brant replacement functor which preserves λ-small objects, and this gives a functor
F : hocolim(Mλ)→ hocolim(M Cof

λ
). For the functor in the other direction we can take

the inclusion G : hocolim(M Cof
λ
)→ hocolim(Mλ). Now we need to make natural trans-

formations η : G ◦ F ⇒ Id and θ : F ◦ G ⇒ Id . For η we note that we need an arrow
X Cof → X which we have by the factorization. For θ on the other hand we need for a
cofibrant λ-small object X an arrow X → X which we take to be the identity map. All
ηX and g(θX ) are weak equivalences, and therefore we can conclude that hocolim(Mλ)
and hocolim(M Cof

λ
) are weakly equivalent. �

From this proposition we already get the idea that Proposition 4.2.12 is important.
This is because Proposition 4.2.13 allows us to restrict to the generators of the model
category, and that already is a step in the right direction.

Now we have sufficient material to prove Proposition 4.2.3. Letλ be a cardinal such
that it is big enough to make all the previous propositions hold. Define the following
set

CR := {γ∗ ∈ cM | γn ∈Mλ for all n ∈ N}
and define f : CR → M which sends γ∗ to γ0. We do not require that γ∗ in CR is
cofibrant. Also, let C beM cof

λ
, and note that f lands in C .
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Our goal is now to prove that hocolim(CR×∆ ↓ X )→ X is a weak equivalence,
and for that we consider the following diagram for a fibrant object X

hocolim(C ↓ X )

a
))

hocolim(CR ↓ X )

��

f∗oo
i∗ // hocolim(CR×∆ ↓ X )

p
ttX

If we take λ sufficiently large, then by Proposition 4.2.13 the map a is a weak equiva-
lence. So, to show that p is a weak equivalence, it suffices by the 2-out-of-3 property to
show that f∗ and i∗ are weak equivalences. This is the most technical part of the proof,
but the idea is simple. We just apply Proposition 3.3.6, and after sufficient work we get
the equivalence.

Lemma 4.2.14. The map f∗ is a weak equivalence.

PROOF. We need to show that the map f∗ : hocolim(CR ↓ X ) → hocolim(C ↓ X )
is a weak equivalence, and for that we use Proposition 3.3.6. First, we need to make
R : C ↓ X → CR ↓ X , and for that look at a certain category. Define E to be the full
subcategory of cosimplicial objects such that each γn is in C . Recall that C consists
of the cofibrant replacements of λ-small objects, so every object in C is cofibrant an
λ-small. Our goal is to make a functor R for objects in E such that

(1) R(A) is Reedy cofibrant;
(2) we have a natural weak equivalence R(A)→ A;
(3) R(A)0 = γ0 and R(A)0→ γ0 is the identity.

This functor is just the Reedy cofibrant replacement functor where we choose the object
in zeroth to be γ0. Now we define two functors whereR maps C → X to (R(C), C → X )
and f :CR ↓ X →C ↓ X maps a pair (γ∗,γ0→ X ) to γ0→ X .

Next we need to make a natural transformationη : f ◦R ⇒ Id . Note that F(R(C →
X )) = f ((R(C), C → X )) = C → X , so we can take η to be the identity. Isomorphisms
are weak equivalences, so in this case we have a weak equivalence. Also, we make a
zig-zag natural transformation θ : R ◦ F ⇒ Id . Define a functor H((γ∗,γ0 → X )) =
(R(γ∗),γ0 → X ), and we shall make natural transformations H ⇒R ◦ f and H ⇒ Id .
By the second property of the functor R we have a natural weak equivalence from H
to the identity. We have a natural map γ∗ → c∗(γ0), because for each n there is a
unique γn → γ0. This gives a map R(γ∗) → R(c∗(γ0)), and that way we get a natural
transformation H ⇒ R ◦ F . Applying f to each of these natural transformation gives
the identity map at γ0 → X , and therefore all requirements of Proposition 3.3.6 are
satisfied. This allows us to conclude that f is a weak equivalence. �

Lemma 4.2.15. The map i∗ is a weak equivalence.

PROOF. We apply Proposition 4.2.12 which says that it is sufficient to show that
hocolim(CR0 ↓ X )→ hocolim(CRn ↓ X ) is a weak equivalence for all n, and recall that
the map i : CR0 ↓ X → CRn ↓ X maps (γ∗,γ0 → X ) to (γ∗,γn → γ0 → X ). Note that
there is a unique map γn → γ0 in γ∗, so this is well-defined. To show that these two
homotopy colimits are weakly equivalent, we apply Proposition 3.3.6.

Next we need to define a functor j : CRn ↓ X →CR0 ↓ X , and for that we make a
map γ0→ γn. Note that we have d : [0]→ [n] in the simplex category ∆ which sends
0 to n, and this gives a map c : ∆[0] → ∆[n] of simplicial sets. Also, from d we get
a map γ0 → γn, and thus we can define j as the functor which sends (γ∗,γ0 → X ) to
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(γ∗,γn→ γ0→ X ). Using the cosimplicial identities we can conclude that j(i((γ∗,γ0→
X ))) = (γ∗,γ0→ X ), so j ◦ i = Id .

The map c gives a map ∆[n] → ∆[0] → ∆[n] which we shall call c as well. To
make a zig-zag of natural transformations from i ◦ j to the identity, we first show that
the map c is homotopic to the identity. Now we can consider the following diagram

∆[n]
∐

∆[n]
(Id ,c)

//

��

∆[n]

��

∆[n]×∆[1] // 1

Let ιk be the inclusion ∆[n]→ ∆[n]× {k} for k ∈ {0,1}, and then we can define the
arrow ∆[n]

∐

∆[n]→ ∆[n]×∆[1] as ι0 on the first copy and ι1 on the second copy.
This is a monomorphism, and thus this map is a cofibration. Also, one can show that
∆[n] is a Kan complex meaning that the map∆[n]→ 1 is a Kan fibration. The geomet-
ric realization is a special case of ⊗∆, namely |K | = K ⊗∆ ∆−, so by Proposition 3.3.4
we can conclude that |∆[n]| = ∆n. Therefore, the map ∆[n]→ 1 induces an isomor-
phism on all homotopy groups, and therefore ∆n→ 1 is a trivial fibration. Hence, this
diagram has a lift h : ∆[n] ×∆[1] → ∆[n] which is a homotopy between c and the
identity.

Before continuing we need to introduce a little extra notation. For a cosimplicial
resolution γ and a simplicial set K we define K ⊗ γ to be cosimplicial object which is
(K×∆[n])⊗γ in degree n. Using this notation and the homotopy to define the zig-zag
of natural transformations and we define H to be the functor sending (γ∗,γn → X ) to
(γ∗ ⊗∆[1], ((∆[1] ×∆[n])0 ⊗ γ∗ → (∆[n])0) ⊗ γ∗). Using Proposition 3.3.4 we can
conclude that

((∆[1]×∆[n])⊗ γ∗)0 = (∆[1]×∆[n]×∆[0])⊗∆ γ∗ = (∆[1]⊗ γ∗)n,

and that

(∆[n]⊗ γ∗)0 = (∆[n]×∆[0])⊗∆ γ∗ =∆[n]⊗ γ∗ = γn

so that H sends elements of CRn ↓ X to CRn ↓ X . Recall that we have inclusion maps
ι0, ι1 : ∆[1]→ ∆[n]×∆[1], and with these we define two maps from ∆0 ⊗ γ∗ → γn,
namely (h ⊗ ι0) ⊗ Id and (h ⊗ ι1) ⊗ Id . Since h ◦ ι0 = Id and h ◦ ι1 = c, we get two
natural transformations η : Id ⇒ H and θ : i ◦ j⇒ H. For η we have the commutative
diagram

γn

$$

ι0⊗Id
// (∆1 ⊗ γ∗)n h // γn

zz
X

and for θ we have the commutative diagram

γn

��

ι1⊗Id
// (∆1 ⊗ γ∗)n h // γn

zz
γ0 // X
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To finish this proof, we need to check that we get weak equivalences if we apply
j to the natural transformations. But if we apply j to them, we get the identity at γ0

which is a weak equivalence. Hence, the map i∗ is indeed a weak equivalence. �



Part 2

Model Structures on Toposes





CHAPTER 5

Topos Theory

Topos Theory connects geometry and logic. We have a geometric way to construct
toposes, namely by using sheaves on a site. Also, from a topos one can construct a model
of intuitionistic set theory, and to do so, one requires elementary toposes. We are mostly
interested in the geometric side of the story, and we will thus restrict ourselves to the
less general notion of a Grothendieck topos.

5.1. Basic Theory

The story starts with the notion of a sheaf. Recall that a presheaf on a category C
is a functor P : C op → Sets. Sheaves arose in geometry as a way to study locality, and
the prototypical example of a sheaf is the functor C(U ,R) defined on the open subsets
U of a topological space. The notion of a sheaf is very diverse, and there are many
different ways of thinking about it. One possible way is that it gives a way to solve
‘local to global’ problems. An example of such a problem, is defining the derivative
of a function on a manifold. Since a manifold is locally Euclidian, we can determine
the derivative locally using methods from analysis. However, we want to define the
derivative on the complete manifold, and thus we need to glue these local solutions
together into a global solution.

Let us try to explain this idea in a more general fashion. For every open subset we
have a set of ‘candidates’ at that part, and with these we can do two things. Firstly, we
can restrict the possible solutions to smaller subsets, and secondly we can glue them
together. To glue the candidates we need them to be consistent in a certain way. This is
because the candidates might be defined on overlapping open subsets, and they should
not contradict each other. Therefore, we will need that the constructed set of candidates
agree on their overlaps. With such a consistent system of candidates, we can glue them
together to obtain a solution on their union.

However, this definition only works for topological spaces, because the objects of
a general category might not be open subsets. To define the notion of sheaves on an
arbitrary category, we will thus need to generalize the notion of a topological space.
The main idea behind this generalization is that the required fundamental notion is
that of a cover. So, instead of saying which sets are open, we give a collection of open
covers of an object.

Let us be more precise and give an actual definition. First, we start with general-
izing topologies to Grothendieck Topologies. We start with a small category C and an
object C ofC , and we would like to say what the open covers of C are. However, before
we can do so, we must define the covers of C , and this definition can easily be gener-
alized from the topological example. A cover consists of open sets Vα all contained in
some fixed open set, and from this we generalize the notion of a sieve. A sieve S on C
is a set of arrows into C such that whenever we have arrows g : Z → Y and f : Y → X
with f ∈ S, then we have f ◦ g ∈ S. For an arrow h : D → C and a sieve S on C we

59
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define h∗(S) as the set {g : X → D | h◦ g ∈ J(C)}. With this generalized notion of cover
we define

Definition 5.1.1 (Grothendieck Topology). Let C be a small category and let J be a
function which assigns to every object C of C a set J(C) of arrows into C . Then we say
J is a Grothendieck topology iff the following is satisfied

(1) For every object C the maximal sieve tC = { f : Y → X } is an element of J(C).
(2) If S ∈ J(C) and h : D→ C , then h∗(S) ∈ J(D).
(3) Let a sieve S ∈ J(C) be given, and let R be any sieve on C . If for every

h : D→ C in S we have h∗(R) ∈ J(D), then R ∈ J(C).

Sieves in J(C) are called covering sieves.

The second condition is called stability and the third axiom is called transitivity.
A site is defined as a pair (C , J) where C is a small category and J is a Grothendieck
topology on C . Let us consider some examples of sites.

Example 5.1.2 (Topological Spaces). Given a topological spaces (X ,τ), the collection
τ is a preorder, and thus a category. First of all, notice that a sieve S is just a downward
closed set of opens, because by definition we have that V ∈ S whenever U ∈ S and
V ⊆ U . If we have an arrow h : V → U , then we have

h∗(S) = {W ⊆ V |W ∈ S}= {W ∩ V |W ∈ S}

where we use that S is downward closed. Given an open U , we define J(U) as {S |
⋃

S = U}. Since the maximal sieve tU contains U , we must have that tU ∈ J(C). If
S covers U , then h∗(S) covers V for h : V → U , because we intersect all subsets in S
with V . The last property holds as well, because if S covers U locally, then it covers U
globally as well.

This example already explains a lot about the definition. The maximal sieve is the
biggest cover you can make, and that covers the object. The second property says that
if you have a cover for U , then you can restrict that cover to parts V of U by pulling
it back to V . The last axiom says that being an open cover is a local property, because
whenever you cover U locally, then you cover it globally. The next example gives a
Grothendieck topology on something which is not on a topological space.

Example 5.1.3 (Complete Boolean Algebras). Let B be a complete Boolean algebra
which again is a category, because it is a partial order. A sieve S is again a downward
closed set of elements, and for a ≤ b we have h∗(S) = {a ∧ c | c ∈ S} for the same
reason as before. Define J(b) = {S |

∨

S = b}. It is not difficult to verify that this is
indeed a Grothendieck topology.

Now we have generalized the notion of topologies so that we can have such things
on arbitrary categories. The next step in the story is the definition of a sheaf, and using
the more general notion of a Grothendieck topology, we can do this on arbitrary sites.

Definition 5.1.4 (Sheaf). Let (C , J) be a site, and let P :C op→ Sets. For an object C
and a covering sieve S we say that a matching family consists of elements x f ∈ P(D) for
f ∈ S such that for all f : D→ C and g : E → D with f ∈ S we have x f ◦g = P(g)(x f ).
Then we call P a sheaf iff for every matching family there is a unique x ∈ P(C) such
that for all f ∈ S we have x f = P( f )(x). The full subcategory of Pre(C ) consisting of
sheaves on the site (C , J) is denoted as Sh(C , J).
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Often we will call sheaves F from the French faisceau. Because every sheaf is a
presheaf, we have the restriction operator, and the sheaf property gives the gluing of
candidates. Also, for the same reason, we have a notion of morphisms between sheaves,
namely natural transformations, and therefore this gives a category. Let a Grothendieck
topos be a category which is equivalent to a the category of shaves on a site. An example
of a sheaf is the functor C(U ,R) on a topological space or C∞(U ,R) on a smooth
manifold. Grothendieck toposes have many useful properties, and one is that they are
locally presentable. To prove this, one can use Theorem 2.2.8 and Giraud’s theorem
[MLM92].

Note that both C(U ,R) and C∞(U ,R) are not just a sets, but actually they are
abelian groups. Such things happen in many algebraic examples where the sheaves
are structured like abelian groups or simplicial sets. To give a general definition of
a structured sheaf actually requires rewriting the definition, but for certain structures
(which are defined using finite limits) this is not necessary. Since all our structured
sheaves will be such simple sheaves, we will thus go for a more specific definition. An
abelian sheaf is an abelian group object of sheaves, and a simplicial sheaf is a simplicial
object in the category of sheaves.

It is not difficult to see that the category of presheaves is complete and cocomplete,
because we can take limits and colimits of presheaves pointwise. Actually, the category
of presheaves has more nice structure, namely it has a subobject classifier which are
defined as

Definition 5.1.5 (Subobject Classifier). Let C be a category with all finite limits, and
let Ω be an object. Then we say Ω is a subobject classifier iff we have an arrow t : 1→ Ω
for every monomorphism A �

�
//B there is a unique arrow χA : B → Ω turning the

following diagram into a pullback

A //� _

��

1

t
��

B
χA

// Ω

So, subobjects of X correspond with arrows from X to Ω. A subobject classifier
can be interpreted as an internal notion of truth, and the arrow t gives the true global
‘element’ of Ω. Also, if we have a subobject classifier Ω in a cartesian closed category,
then we can define the power P(X ) of an object X to be ΩX .

In Sets the subobject classifier is {0,1} and the map from 1 to {0, 1} sends the
point to 1. A predicate on some set X can be identified as a subset of it, namely the
subset of all objects in X for which the property holds. We see the inclusion A ⊆ B as
a predicate on B, and the pullback says that we have an arrow φ : B → Ω such that
A= {x ∈ B | φ(x) = 1}. Replacing φ by the formula φ(x) = 1, then A is precisely the
subset of B defined by this formula. In this case the power of an object X is just the
power set P (X ).

The subobject classifier of SetsC
op

is defined to be the collection of all sieves on an
object. Lastly, the category of presheaves is cartesian closed where for presheaves X
and Y we define

Y X (C) = SetsC
op
(X × yC , Y ).

However, this only gives structure on the category of presheaves, and we would like
structure on the category of sheaves. It turns out that the product of sheaves, exponen-
tial of sheaves and that the subobject classifier Ω are sheaves. However, for the colimits



62 5. TOPOS THEORY

this does not hold, and for that we need more namely sheafification functor a. Sheafi-
fication will not be a main topic in this thesis, and its definition is rather technical, so
we will skip the details here. The important property of sheafification a is

Proposition 5.1.6. We have a map X → a(X ) and that for a presheaf X . Also, for every
sheaf F, maps from X to F factor uniquely through the map X → a(X ). In a diagram this
is

X //

��

F

a(X )

==

Now we define colimits in the category of sheaves on a site by taking the colimit
as presheaves and then applying sheafification. Sheafification is an important functor
in sheaf theory, because it preserves finite limits and it is the left adjoint of the inclu-
sion functor from Sh(C , J)→ Pre(C ). All Grothendieck toposes can thus be written as
a reflective subcategory of a presheaf category where left adjoint preserves finite lim-
its. Giraud’s theorem gives a converse of this statement, and says that every reflective
subcategory of Pre(C ) is the category of sheaves on some site.

The following step is to define a suitable notion of morphism between Grothendieck
toposes, and the main idea is to imitate the case of toplogical spaces. Suppose we
have two topological spaces (X ,OX ) and (Y,OY ). Given a continuous map f from
X to Y , then we can construct a map from Sh(OX ) to Sh(OY ) with their standard
Grothendieck topologies. If we have an open U in Y and a sheaf F on OX , then we
define f∗(F)(U) = F( f −1(U)). This is called the direct image of the sheaf. Using a bit
more work and technique, one can show that f∗ has a left adjoint f ∗ which preserves
finite limits. We generalize this construction to obtain a suitable notion of morphisms
between Grothendieck toposes, namely the notion geometric morphism.

Definition 5.1.7 (Geometric Morphism). Let E and F be Grothendieck toposes. A
geometric morphism from E toF is an adjunction f ∗ a f∗ where f ∗ :F → E , f∗ : E →F
and f ∗ preserves finite limits. We call f∗ the direct image part and f ∗ the inverse image
part.

The direction of the morphism is f∗. A geometric morphism is called surjective if
f ∗ is faithful. The last important property is that we can factorize every map between
sheaves as an epimorphism followed by a monomorphism. This means that we can talk
about the image of a map.

Proposition 5.1.8. Let E be a topos and let f : X → Y be a map. Then we can factorize
f as follows

X
f

//� o

m
��

Y

Z

e

??

where m is mono and e is epi. Also, m is the image of f which means that whenever f
factorizes through some mono h, then m factorizes through h as well.
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PROOF. The first step is to construct the cokernel pair of f , and for that we look at
the following pushout

X
f
//

f
��

Y

q

��

Y p
// Z

The corkernel pair of f is p and q. Next we take the equalizer of p and q, and we get a
monomorphism m : E→ Y . By the universal property of the equalizer, we get an arrow
e : X → E. This gives the factorization of f as m ◦ e.

Now we first show that whenever we can write f = h ◦ g with h mono, we can
write m= k ◦ h. We now have the following diagram

X e // E m // Y p //
q // Z

X
g
// F h // Y

First, we show that h is the equalizer of two arrows, namely u= χF and v = t◦!Y where
!Y is the unique map from Y to 1. By the universal property of Ω we have the following
pullback square

F

h
��

!F // 1

t
��

Y
χF

// Ω

For an arbitrary object W we have that an arrow ϕ from W to F corresponds to an
arrow ψ : W → Y such that χF ◦ψ = t◦!W . Now note that !W =!Y ◦ f , so for ψ we
have that χF ◦ψ = t◦!Y ◦ψ. Hence, from this we can conclude that h is the equalizer
of t◦!Y and χF .

Because f = h◦ g and u◦h= v ◦h, we also have u◦ f = u◦h◦ g = v ◦h◦ g = v ◦ f .
Now we look at the following diagram

X
f
//

f
��

Y

q

��
v

��

Y

u
''

p
// Z

Ω

By the universal property of the pushout we thus get an arrow w : Z → Ω such that
w◦ p = u and w◦q = v. From that we can conclude that m◦u= m◦w◦ p = m◦w◦q =
m ◦ v, and now we consider the diagram

F h // Y v //
u //
Ω

E

m

??
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By the universal property of the equalizer we then get an arrow k : E→ F which gives
the desired factorization. Hence, we have m = k ◦ h, so m factors through all monos h
for which we can write f = h ◦ g.

To conclude the argument, we need to show that e is an epimorphism. For this
we factorize e = m′ ◦ e′ in the same way as before with m′ mono. So, f is now equal
to m ◦ m′ ◦ e′, and because m factors through monos h with f = h ◦ g, we can write
m = m ◦m′ ◦ k for some k. Now we have that m ◦ Id = m ◦m′ ◦ k, and because m is
mono, this means that Id = m′ ◦ k. The arrow m′ is a retract, so it must be epi. Also,
we have m′ ◦ (k ◦m′) = m′ ◦ Id , and because m′ is mono, this gives that k ◦m′ = Id .
Hence, m′ is an isomorphism, and from this we will conclude that e is epi.

For the construction of m′ we first took the cokernel pair of e, which was x , y :
E→ A, and then we defined m’ as the equalizer of x and y . Since m′ is iso, we get that
x = y . To show that e is epi, we take arrows a, b : E→ B such that a ◦ e = b ◦ e.

X e //

e
��

E

a

��

y

��

E

b
''

x // A

B

By the universal property of the pullback we get a unique arrow u such that a = u ◦ x
and b = u ◦ y . Using that x = y we get a = u ◦ x = u ◦ y = b, so a = b. This gives that
e is epi, and now we have the required factorization. �

5.2. Logic in Toposes

The subobject classifier allows us to do logic in toposes. Normally in logic notions
of truth have a certain structure, namely we can take conjunctions, disjunctions and so
on, and our goal is to show that we have such structure on Ω as well. More precisely,
we want to construct morphism ∧,∨,→: Ω×Ω→ Ω and ⊥,> : 1→ Ω which represent
the logical connectives. However, if we just look at the topos itself, it is not obvious
what kind of properties these maps should satisfy or how we should define them. The
point is that we should look from two perspectives to the topos, namely we should look
both from internal and external perspective. Objects and maps are internal notions, but
Hom-sets and sets of subobjects are external notions, because these do not live in the
topos itself. To construct the maps, we first study the topos from external perspective
where we can talk about the subobjects of some objects. There we can easily find the
required structure, and we have an obvious way of understanding why they mean the
right thing. Next we make this structure internal which can be done by the universal
property of Ω.

Let us start by studying the external notion. Recall that Sub(B) consists of isomor-
phism classes of monomorphisms X → B, and it can be ordered by saying that i ≤ j
iff we can factor i through j. Suppose that we have two subobjects X�

�
//B and

Y�
�

//B . We can find a greatest lower bound of them by taking the pullback of the
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square

X ∩ Y �
�

//� _

��

X � _

��

Y �
�

// B

One can directly show by definition that the map X ∩ Y → B is a monomorphism, and
thus X ∩ Y is a subobject of B. A greatest upper bound can be found by taking the
pushout of the square

X ∩ Y �
�

//� _

��

X

��


 j

��

Y //u�

((

Z

��

B

The map Z → B is a monomorphism which is proved in [Joh14]. However, this result
requires more technique, and even without it we can define the union. Using Proposi-
tion 5.1.8 we can write f as Z //X ∪ Y�

�
//B where X ∪Y is indeed a subobject of

B. From the construction it follows that X ∩ Y and X ∪ Y are indeed the greatest lower
bound and the least upper bound respectively in the partially ordered set of subobjects.
We can thus conclude that Sub(B) always is a lattice.

When B is the terminal object 1, there is more structure on Sub(1), namely it has
exponentials. If we have two subobjects i : X → 1 and j : Y → 1, we claim that X Y

is a subobject of 1 as well. We have a unique map k from X Y to 1, and now we show
that k is mono. Suppose that we have f , g : Z → X Y such that k ◦ f = k ◦ g. Using
the adjunction of the exponential f and g correspond to maps ef , eg : X × Y → X such
that i ◦ ef = i ◦ eg. Since i is mono, we get that ef = eg, and thus f = g. By the universal
property of the exponential, we can thus conclude that Sub(1) also has an implication.
Lastly, we have 0 → 1 and an arrow 1 → 1 which represent the bottom and the top
element of the partial order respectively.

Now we know that Sub(1) has the desired structure, but this is constructed from
an external perspective. This is not precisely what we want, because we would like
to construct the structure internally using arrows in the topos. By definition of Ω we
have that Sub(X ) and Hom(X ,Ω) are naturally isomorphic. Using this isomorphism
we can transfer the structure from Sub(X ) to Hom(X ,Ω) which gives us the respective
operations on Hom(X ,Ω). Now we will internalize the operations using the Yoneda
lemma. All of them can be done in a similar way, and we do it for the conjunction.

Since we have natural isomorphisms Sub(X )× Sub(X )∼= Hom(X ,Ω)×Hom(X ,Ω)
and Sub(X ) ∼= Hom(X ,Ω), and a natural transformation Sub(X )× Sub(X )→ Sub(X ),
we get a natural transformation ∧ : Hom(X ,Ω)×Hom(X ,Ω)→ Hom(X ,Ω). The map
Sub(X )× Sub(X )→ Sub(X ) mapping (X , Y ) to X ∩ Y is natural by the universal prop-
erty of the pullback, and for X ∪ Y and X Y similar arguments can be given. Since
Hom(X ,Ω)×Hom(X ,Ω) is naturally isomorphic to Hom(X ,Ω×Ω), we have a natural
map Hom(X ,Ω×Ω)→ Hom(X ,Ω), and this gives a map from yΩ×Ω→ yΩ. Applying the
Yoneda lemma gives a map in yΩ(Ω×Ω) = Hom(Ω×Ω,Ω) which is called the internal
meet operator. To summarize, we have proven the following theorem

Theorem 5.2.1. The subobject classifier Ω in every topos is an internal Heyting algebra.
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In logic we also need quantifiers to get an expressive language. However, to define
these an intermediate step is required, namely we need to see quantifiers as adjoints.
Using this view, we can define the quantifiers on toposes using the same techniques as
for Theorem 5.2.1.

Let us start by explaining in Sets how we can see quantifiers as adjoint. Using the
quantifiers ∃X and ∀X we can turn a formula with free variables X and Y to a formula
whose only free variable is Y , so they can be seen as maps ∃X ,∀X : P (X × Y ) →
P (Y ). More explicitly, they are defined as ∃X (S) = {y | there is x with 〈x , y〉 ∈ S}
and ∀X (S) = {y | for all x we have 〈x , y〉 ∈ S} On the other hand, we have a function
p∗ : P (Y )→ P (X × Y ) sending a set T to {〈x , y〉 | y ∈ T}. It is not difficult to show
that for all subsets S ⊆ X × Y and T ⊆ Y we have ∃X (S) ⊆ T iff S ⊆ P∗(T ) and that
T ⊆ ∀X (S) iff p∗(T ) ⊆ S. This means that the existential quantifier is the left adjoint of
the map P (p∗) and the universal quantifier is the right adjoint of it.

In the motivation we defined the quantifiers for all powersets, and for toposes we
can define them as well for all 2X . However, we are only interested in quantifiers on
the subobject classifier, so we will only define it for Ω1.

Theorem 5.2.2. Let X be an object in a topos. Then the map P(!X ) has a left adjoint ∃X
and a right adjoint ∀X .

PROOF. The proof uses similar techniques as Theorem 5.2.1, and we will only do it
for the existential quantifier. For the right adjoint ∀X we can give a similar argument,
but then we need that the functor E/1 → E/X has a right adjoint and that we have
maps Sub(X )→E/X and Sub(1)→E/1. This construction of the right adjoint is more
complicated, and for that we refer the reader to [MLM92]. Our goal is to construct
a map P(X ) → P(1), and to do this in the same way as before, we need to construct
maps Hom(Y, P(X ))→ Hom(Y,Ω) for every object Y . Since Hom(Y, P(X ))∼= Hom(Y ×
X ,Ω), we have Hom(Y, P(X )) ∼= Sub(Y × X ). So, if we can make a natural left adjoint
Sub(Y × X )→ Sub(Y × 1), then we can apply Yoneda to conclude the argument.

Now we can construct ∃X externally. Note that externally we have a map Sub(Y )→
Sub(X × Y ) given by pullback, and we need to prove that this map has a left adjoint.
For a subobject S→ Y ×X we get a map S→ Y which we can factor as S→∃X (S)→ Y
as in Proposition 5.1.8. We can form the following diagram where Q is the pullback

S

��

// ∃X (S)

��

Q //

��

T

��

Y × X // Y

Note that this construction is natural, and that is because ∃X (S) is universal by Propo-
sition 5.1.8. If we have f : Z → X , we get f ∗(S) by pullback. Then we have two factor-
izations of f ∗(S)→ Y , namely f ∗(S)→ ∃Z( f ∗(S))→ Y and f ∗(S)→ S → ∃X (S)→ Y ,
and the arrows ∃X (S)→ Y and ∃Z( f ∗(S))→ Y both are mono. Hence, we get a map
∃Z( f ∗(S))→∃X (S) by Proposition 5.1.8.

If we have a map ∃X (S)→ T , then we get by the universal property of the pullback
a unique map S → Q. On the other hand, if we have a map S → Q, then we have a
factorization of the map S→ Y as S→ T → Y , and the last arrow here is a monomor-
phism. Hence, by Proposition 5.1.8 we thus get a unique map ∃X (S)→ T . �
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5.3. A Short Intermezzo on Localic Toposes

Our next goal is to prove Barr’s theorem which says that for every topos E there is
a surjective geometric morphism Sh(B)→ E where B is a complete Boolean algebra.
The proofs of the results require some methods which are not needed in the remainder
of this thesis, and thus we will not prove them. To prove this, we need to make use of
locales.

Definition 5.3.1 (Locale). A locale is a lattice with all joins and finite meets such that
a ∧

∨

i∈I bi =
∨

i∈I (a ∧ bi).

With locales we want to imitate topological spaces, so we need a functor from Top
to locales which sends (X ,OX ) to O (X ) and f : X → Y to f −1 : O (Y )→ O (X ). Hence,
we define a morphism from a locale X and to a locale Y to be a map f : Y → X such
that

f (0) = 0, f (1) = 1, f (a ∧ b) = f (a)∧ f (b), f (
∨

i∈I

ai) =
∨

i∈I

f (ai).

Now we indeed have this functor. The next step is to define a Grothendieck topology on
locales, and we say that a sieve S on c is covering iff its supremum is equal to b. This
really copies the Grothendieck topology of a topological spaces, and using the same
arguments we can show that it is indeed so.

Theorem 5.3.2. The following two statements are equivalent

(1) There is a site for E which is a locale with its canonical topology.
(2) The topos E has a site which is a partial order.

If we want to make a topos with a locale as a site, then it suffices to make one where
the site is a partial order. Working with locales is easier than working with general sites,
and thus this theorem already simplifies a lot. The next relevant proposition says that
construct maps between sheaves, it suffices to make maps between locales.

Proposition 5.3.3. A map f : X → Y between locales gives a geometric morphism
Sh(X )→ Sh(Y ).

Arrows between locales are reversed, so notions of product and coproduct are re-
versed. For example, to construct the coproduct of locales, we take their product, and
then the operations are defined pointwise. Similarly, the notion of epimorphism and
monomorphism are reversed. So, if we want to construct an epimorphism from a locale
Y to X , then we need to make an injective map from X to Y .

Proposition 5.3.4. Let X be a locale. Then there is a surjection Y → X where Y is a
complete Boolean algebra.

PROOF. Note that in a locale we have 0 and 1, and that we can define U ⇒ V as
∨

W∧U≤V W . As usual, if we have an implication and a 0, then we can define ¬U = U ⇒
0. Now let U be any element of X , and consider

X − U = {V ∈ X | V ≥ U}

consisting of the elements greater than U . This is a locale as well where we take the
same operations as in X , the 0-element is U and the 1-element is X . Hence, in this
locale we have a implication operator⇒ which is defined as V ⇒ U .
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For the construction of Y , we need something which turns a locale into a Boolean
algebra. Let us now look at the fix points of ¬¬, so we define for any locale Z

Z¬¬ = {V ∈ Z | V = ¬¬V}.

Note that ¬¬0 = 0 and ¬¬1 = 1. Also, we can show that if ¬¬U = U and ¬¬V = V ,
then ¬¬(U ∧ V ) = U ∧ V . For this we need to show laws like ¬¬(U ∧ V ) = ¬¬U ∨¬¬V
which require some calculations. By the defining property Z¬¬ is a complete Boolean
algebra, because ¬¬U = U .

Now we can define Y as
∏

U∈X (X −U)¬¬, and note that this is a complete Boolean
algebra, because it is the product of complete Boolean algebras. It remains to make
an injective map p : X → Y , and for this we need to make maps pU : X → (X − U)¬¬.
Since ¬¬¬¬V = ¬¬V and V ∨ U ≥ U , we define pU(V ) = ¬¬(V ∨ U). To show that
p is injective, we take V 6= W . Because p is a homomorphism, we have p(V ∨W ) =
p(V )∨ p(W ), so if we show that p(V ∨W ) 6= p(V ), then we must have p(V ) 6= p(W ).
Since V ≤ V ∨W and V 6= V ∨W , we have pV (V ) = 0 and pV (V ∨W ) 6= 0. This is
because V ∨W ≤ ¬¬(V ∨W ) = pV (V ∨W ) taking the negation in (X −V ). Concluding,
we have a complete Boolean algebra Y and a surjective map Y → X of locales. �

5.4. Boolean Localization

Theorem 5.4.1 (Barr’s Theorem). If E is a Grothendieck topos, then there is a complete
Boolean algebra B and a surjective geometric morphism Sh(B)→E .

To prove this, we use the theory of localic toposes as discussed in the previous
section and the following lemma

Lemma 5.4.2. Given a Grothendieck topos E , we have a surjective geometric morphism
Sh(X )→E where X is a locale.

From this proposition Barr’s theorem follows. For a Grothendieck topos E we have
Sh(eX )→ Sh(X )→ E where eX is the completion of X as in Proposition 5.3.4. We have
the map Sh(eX )→ Sh(X ) by Proposition 5.3.3.

PROOF OF LEMMA 5.4.2. Using Theorem 5.3.2 it is sufficient to construct a topos
on a site which is a partial order. We just show how to construct the site, and refer
the reader to [MLM92] for the functor. Let C be a site with a Grothendieck topol-
ogy J on it. We define a partial order String(C) where the objects are sequences of

Cn
αn−1 // . . .

α0 //C0 , and the order is the prefix. So, we say t ≤ s iff s is of the form

Cn
αn−1 // . . .

α0 //C0 , and t is of the form Cn+m
// . . . //Cn

αn−1 // . . .
α0 //C0 . This

gives a category String(C), and we define a functor π : String(C) → C which sends

the string Cn
αn−1 // . . .

α0 //C0 to Cn. Next we define a Grothendieck topology K on
it, so let U be a sieve on s. Then we say that U is covering iff for all t ≤ s the set
{π(t ′ ≤ t) | t ′ ∈ U} covers π(t).

Let us prove that K is indeed a Grothendieck topology. The maximal sieve on s is
the set {t ′ | t ≤ s}, so it contains the identity for all t. Hence, it is covering by definition.
Next let us check stability. Let U be a covering sieve on s, and let t ≤ s. We need to
check that t∗(U) = {t ′ ≤ t | t ′ ∈ U} is a covering sieve. But this follows readily from
the definition, because we need to check that for t ′ ≤ t the set {π(t ′′ ≤ t ′) | t ′′ ∈ U}
covers π(t ′). This follows from the assumption that U covers s.
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Lastly, we need to check the transitivity. Let a covering sieve U on s be given and
let V be any sieve on s. Suppose that for all t ∈ U the sieve t∗(V ) is covering. To show
that V is covering, we need to show that for all t ≤ s the sieve {π(t ′ ≤ t) | t ′ ∈ V}
covers π(t). For every t ′ ≤ t with t ′ ∈ U we know that (t ′)∗({π(t ′ ≤ t) | t ′ ∈ V})
is covering, because (t ′)∗(V ) is. Hence, by applying transitivity of J we get that V is
indeed covering. �





CHAPTER 6

Some Categorical Logic

6.1. Interpreting Logic in Toposes

An important part of logic is model theory. In the beginning of logic we start by
defining a formal language, and we study formal systems. However, if we just study
the formal systems by themselves, we do not get the complete story. To prove the
undecidability of some formula, we need to consider models and interpretations of
formal systems. Normally these interpretations are in Sets, but this can be generalized.
Instead of considering just set-based interpretations, we can try to interpret them in
more general structured categories. At first this seems to be a generalization just for the
beauty of generalization, but it is more. For example, Cohen’s forcing argument from
[Coh63] can be formulated in the language of topos theory, and the topos theoretic
proof helps revealing the mathematical ideas of it. Therefore, it is nice to be able to
interpret logic in arbitrary categories instead of just the category of sets.

Before diving into formal definitions, let us think about the main ideas. The lan-
guage of categories is formulated using the arrows, and the statements we can formu-
late are that certain arrows are equal. It does not make sense to say that certain objects
are equal: we just talk about arrows and their equality. Hence, to interpret statements
in categories, we will need to formulate everything using arrows. The languages we
consider consist of multiple types, functions, relations and constants. Normally we
see types as sets, and these will be replaced by objects. Interpreting functions is easy,
because we can see a function as an arrow. However, for functions with multiple ar-
guments, we will need that the category has products, because then the domain is the
product of the types of every argument. For relations we need to think a little. Ev-
ery predicate on a set X can be identified with a subset of X , namely as all elements
for which the property holds, and this can be generalized. Namely, we can interpret
predicates on an object X as subobjects of it. If we want to form more complicated
statements, namely conjunctions or disjunctions of predicates, we will need that our
category has more structure. This is the main starting idea of categorical logic: we
interpret statements of some formal systems in an arbitrary category using the arrows.

However, there is a minor problem. In logic we would like to talk about the truth
of statements. A formal system does not only consist of a language, but also of axioms
which every model of it should satisfy. To do so, we will need an internal logic of truth,
and this is given by a subobject classifier defined in definition 5.1.5. Therefore, toposes
will allow the desired interpretations.

Now we have enough to study categorical logic, and we start by recapitulating
some well-known definitions from logic

Definition 6.1.1 (Language for First-order Many-Sorted Logic). A language for first-
order many-sorted logic consists of a set T of types, a set R of relation symbols, and a
set F of function symbols. Also, for every relation R ∈ R we have an arity #(R) ∈ N≥1

71
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and a type t(R) ∈ T #(R). For every function f ∈ F we also have an arity #( f ) ∈ N and
a input type i( f ) ∈ T #(r) and an output type o( f ) ∈ T .

Instead of the notation we write that f : T1 × . . . T#( f ) → T and R ⊆ T1 × . . . T#R.
As always we can consider constants the be functions with arity 0. From the functions
we can construct terms by composing them and inserting free variables. Every such
term has a type, and the basic formulas are made by putting such terms in relations.
From such basic formulas, we can use connectives like ∧,∨,∀,∃ to make more compli-
cated formulas called sentences. A more precise definition of formulas can be found in
[Mar02]. Lastly, a collection of sentences in a certain language gives an axiom system.
A structure S consists of a language L with an axiom system in L.

Example 6.1.2 (Simplicial Sets). Simplicial set can be described using this language.
For every natural number i we have a type Ti , and for every arrow [i] → [ j] in ∆op

we have an function symbol f : Ti → T j . We have special arrows namely the boundary
maps di and the degeneracy maps si , and for it to be a simplicial object certain identities
using the maps di and si need to be satisfied. These identities are described in [GJ09].
Now we can interpret this in Sets in the usual fashion: every type Ti gets interpreted
a set X i and every function symbol fi : Ti → T j gets interpreted as an actual function
fi : X i → X j . The axioms say that it is indeed a simplicial set.

As described the next step is to interpret such axiom systems in more general
categories than just Sets. Types Ti in T are interpreted as objects ¹Tiº. A function
f : T1× . . .×T#( f )→ T is interpreted as an arrow ¹T1º× . . .×¹T#( f )º→ ¹Tº, and a re-
lation R ⊆ T1× . . .× T#( f ) is interpreted as a subobject ¹Rº //// //

¹T1º× . . .× ¹T#( f )º .
Now we can interpret simplicial objects in every category using these definitions, but
we cannot say yet whether the axioms are satisfied. In the general case this is difficult,
but in this case it is easy. If we write out the axioms of simplicial sets, then we see that
only some diagrams need to commute, and that can be translated to the interpretation.

Now let E be a topos. If we have a relation R ⊆ T1× . . .× T#( f ), we can interpret it
as a subobject of ¹Rº //// //

¹T1º× . . .× ¹T#( f )º and this gives an arrow ¹T1º× . . .×
¹T#( f )º → Ω. By Theorems 5.2.1 and 5.2.2 we can now talk about formulas E . For
example, if we have two formulas ϕ,ψ : X → Ω, then we can take their conjunction

X
ϕ×ψ
//Ω×Ω ∧ //Ω and the same can be done with the other connectives. A formula

said to be true iff it factors true the map t : 1→ Ω. The map t can be seen as an ‘element’
of Ω, which is the truth element, and that is the motivation of this definition. Now
we can define the interpretation of a structure in a topos. If S is a structure, then an
interpretation of S in E is an interpretation on E such that all axioms are true. From this
we can make a category ModS(E ). We define a map from ¹·ºM to ¹·ºN to be a collection
of arrows ϕi : ¹TiºM → ¹TiºN such that for each function symbol fi : T1 × . . . Tn → T0
the diagram

¹T1ºM × . . .× ¹TnºM
¹ fiºM //

ϕ1×...ϕn

��

¹T0ºM

ϕ0

��

¹T1ºN × . . .× ¹TnºN
¹ fiºN

//
¹T0ºN

commutes, and for each relation symbol Ri of type T1 × . . . × Tn the object (ϕ1 ×
. . . × ϕn)(¹RiºM ) is a subobject of ¹RiºN . The first requirement just says that it pre-
serves function symbols, and the second requirement says that it preserves relation
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symbols. Similarly, if A is a collection of sentences in the language of S, then we de-
fine ModS,A (E ) to be the full subcategory of ModS(E ) consisting of the objects which
satisfy all axioms inA .

For Chapter 7 we will need the notion of a structure defined using finite limits, and
for this we need some extra requirements on the structure.

Definition 6.1.3 (Cartesian Logic). Let S be a structure. Then we say S is defined in
terms of finite limits or that S is defined in cartesian logic iff there are no relation symbols
except for equality, and all axioms are of the form ∀x1

. . .∀xn
[ϕ⇒∃!y1

. . .∃!ym
ψ]where

ϕ and ψ are formulas only using ∧.

Here ∃!xϕ means that there is a unique x which satisfies ϕ. In the same way as
in Example 6.1.2 we can define simplicial objects in an topos to be the interpretations
of this structure. One can check that this structure is defined in finite limits by looking
at the axioms. Another example of structures defined in finite limits are universal al-
gebras. A universal algebra consists of a collection of function symbols, some of which
might have arity 0. A more precise definition can be found in [SB]. Note that the
interpretation of a function symbol of arity 0 is just an element of a set. The algebra
might have some equations which should be satisfied, and all of these can be written in
cartesian logic. Hence, every universal algebra is a structure which is definable using
finite limits.

From [Bek01] we several properties of the category ModS(E ).

Proposition 6.1.4. Let S be a structure defined using finite limits, and let E be a topos.
Then

(1) ModS(E ) is locally presentable.
(2) A geometric morphism E → F induces an adjunction between ModS(E ) and

ModS(F ).
(3) For a small category D we have that ModS(E D) is isomorphic to (ModS(E ))D.
(4) There exists a finite limit structure Mor(S) and a canonical equivalence between

Mor(ModS(E )) and ModMor(S)(E ).

PROOF. Most of the proofs are rather easy and straightforward. For example, (2)
follows by restricting the adjunction and noting that the left adjoint preserves finite
limits. To show (3) one needs to notice that limits and colimits in ModS(E )D are taken
pointwise, and this gives the isomorphism between ModS(E )D and ModS(ED).

However, (1) is more difficult, and requires some technique. Our approach will
be as follows: first we show it for sets. Now we can conclude using (3) and Exam-
ple 2.2.9 that it also holds for arbitrary presheaf toposes. If we have a sheaf topos
Sh(C ), then we have an adjunction Sh(C ) //Pre(C )oo . This induces an adjunction
ModS(Sh(C )) //ModS(Pre(C ))oo by (2) where the left adjoint again is the inclusion.
Since ModS(Pre(C )) is locally presentable, and ModS(Sh(C ))) is a reflective subcat-
egory of it, it will be locally presentable as well. From this we can conclude that it
suffices to show that ModS(Sets) is locally presentable to conclude that the conclusion
holds for arbitrary toposes as well.

Now it remains to show that ModS(Sets) is locally presentable, and for this we use
Theorem 2.2.8. We have a forgetful functor ModS(Sets)→ Sets, and if we show that it
has a left adjoint, then it follows. This left adjoint gives the ‘free algebra’ on a set, and
let us recall the construction of it. Write L for the language of S, and for an arbitrary
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set U we define with induction

X0 = U , Xn+1 = Xn ∪ {(t, u1, . . . , u#(t)) | t ∈ L , ui ∈ Xn}, X =
⋃

n∈N
Xn.

For t ∈ L and u1, . . . , u#(t) ∈ X we define t(u1, . . . , u#(t)) as (t, u1, . . . , u#(t)) which
makes X an algebra. Basically X consists of all terms you can make using the language
and elements of U . A homomorphism from X → Y is determined by what it does on
U which is shown using induction. Also, if we know a homomorphism on U , then it
uniquely can be extend to one on X which shows that this is indeed a left adjoint of the
inclusion.

For the last property we have a structure S with types T and function symbols S .
To define the finite limit structure Mor(S), we add for every type T ∈ T two types T
and T ′ and a function symbol fT : T → T ′ to Mor(S). The axioms of this structure just
say that the diagram

T1 × . . .× Tn
f
//

fT1
×...× fTn

��

T0

fT0

��

T ′1 × . . .× T ′n f
// T0

commutes for every function symbol f . This can all be written in cartesian logic, so
Mor(S) is definable using finite limits. �

Since S-structures are defined using finite limits, they are preserved by the inverse
image maps of a geometric morphisms. In addition, these preserve more formulas,
namely they preserve the geometric sequents.

Definition 6.1.5 (Geometric Sequent). Let L be a language with types T , function
symbols F and relation symbols R . Then a geometric sequent of L is a formula of
the form ∀x1

. . .∀xn
[ϕ ⇒ ψ] where ϕ and ψ are built from ∃, finite conjunctions and

infinite disjunction.

In this language one can say that a map f is a monomorphism with the formula
∀x∀y[ f (x) = f (y) ⇒ x = y]. With this terminology we can state and prove the
following proposition.

Proposition 6.1.6. Given a structure S defined in terms of finite limits, a topos E , and a
setA consisting of geometric sentences in the language of S. Then we have

(1) If E →F is a geometric morphism and X ∈ModS(F ) such that X |=A , then
f ∗(X ) |=A .

(2) ModS,A (E ) is closed under filtered colimits.
(3) Given a small categoryD and for an object d ∈ D define the functor εd : ED →E

which evaluates a functor at d. Then for X ∈ModS(ED) we have X |=A iff for
all objects d of D we have εd(X ) |=A .

(4) The category ModS,A (E ) is accessible, and the inclusion ModS,A (E )→ModS(E )
is accessible.

PROOF. Because geometric morphisms preserve S-structures and geometric formu-
las, (1) follows immediately. To show that such a geometric morphism preserves formu-
las, we just need that it commutes with finite limits and arbitrary colimits, and filtered
colimits enjoy that property as well, so (2) follows.



6.2. SKETCHES AND DEFINABLE FUNCTORS 75

Since evaluation at d preserves finite limits and arbitrary colimits, it thus preserves
geometric formulas. Also, limits and colimits in ED are evaluated pointwise, so to
determine the truth of a formula in E we have to check it at every point. Hence, we
have X |= A iff for all objects d we have εD(X ) |= A . Now note that (3) says that
ModS,A (ED) and ModS,A (E )D are isomorphic.

Lastly, we show (4), and for this it suffices to show that ModS,A (E ) is accessi-
ble, because then it is accessibly embedded in ModS(E ). We start by showing that
ModS,A (Sets) is accessible. For this we use the downward Löwenheim-Skolem Theo-
rem for which we refer the reader to Theorem 2.3.7 in [Mar02]. Note that the category
ModS,A (Sets) has all filtered colimits by part ii. Let κ be the cardinality of T ∪F ∪R ,
so it is the total number of symbols in the language of S, and let I be the set of all S-
structures which satisfy every sentence inA and have cardinality at most κ. If we have
an S-structure X , then we can write X as a colimit of elements of I . For x in X we can
find an elementary substructure Yx of X with cardinality at most κ by the downward
Löwenheim-Skolem Theorem. Note that Yx satisfies all axioms in A , because it is an
elementary substructure. Then we have X = colimx∈X Yx , and thus ModS,A (Sets) is
indeed accessible.

Since the Löwenheim-Skolem Theorem holds in arbitrary Grothendieck toposes
[ack], this argument can be applied to arbitrary Grothendieck toposes. Hence, all
ModS,A (E ) are accessible. �

For the last proposition we look at geometric morphisms. Obviously, if a functor
preserves colimits and finite limits, then it preserves the truth of geometric formulas.
However, less obviously, if a geometric morphism is surjective as well, then it reflects
the truth of geometric formulas.

Proposition 6.1.7. Let f ∗ a f∗ be a surjective geometric morphism. Then we have A≤ B
iff f ∗(A)≤ f ∗(B).

PROOF. Note that surjective means that f ∗ is faithful, and thus it is injective on
subobjects. Also, if A ≤ B, then f ∗(A) ≤ f ∗(B), because f ∗ preserves all colimits and
finite limits. Now suppose that f ∗(A) ≤ f ∗(B) where A and B are subobjects of E.
Note that f ∗(A∧ B) = f ∗(A) ∧ f ∗(B) = f ∗(A), because f ∗ preserves finite limits and
f ∗(A)≤ f ∗(B). Because f ∗ is injective on subobjects, we have A= A∧ B, and from this
we can conclude that A≤ B. �

6.2. Sketches and Definable Functors

Another way to define ‘definable’ is via sketches. When we use sketches, we will use
diagrams to define the structure. Before diving into formal definitions, let us look at an
example first. A monoid object in a category is an object A with arrows m : A× A→ A
and e : 1→ A such that the following diagrams commute

A× A× A
id×m //

m×id
��

A×

m
��

A× A m
// A

, A× A

m
��

1× A

e×Id
::

∼=
// A A× 1

Id×e
dd

∼=
oo

To formulate such definitions in general, we need to say that some arrows exist and
that some diagrams commute. However, we also need to say that the domain of the
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arrow is a product, and in more general cases we might want to use more general limits
or colimits as well. To do this, we use sketches.

Definition 6.2.1 (Sketch). A sketch S consists of a diagram D with a set U of cones
on D and a set V of cocones on D. A model of a sketch in a category C is a functor
D →C which sends the cones in U to limiting cones and the cocones in D to colimiting
cocones. We define S[C ] to be the full subcategory of C D of models of the sketch S.

More concretely, what is a sketch? Let us consider the example for a group, and for
this we first need to describe a category. We need an arrow from m : B→ A, an arrow
i : A→ A and e : C → A, and we need to say B = A× A and C = 1. This means that C
is a limiting cone and that we have two arrows π1,π2 : B→ A such that the following
diagram is a limiting cone

A B
π1oo

π2 // A

Now we have the required structure, but we also need to guarantee that certain dia-
grams commute. We will only show how to say that C → A is a unit for m, because
the other diagrams can be described in the same way. We need two auxiliary objects E
and E′ which represent A× C and C × A respectively, and for this we need two cones.
They also have arrows p1 : E → A, p2 : E → 1, q1 : E′ → 1 and q2 : E′ → A. The other
ingredient are the product arrows and for this we need two diagrams

A

Id
��

E
p1oo

p2 //

r1

��

C

e
��

A B
π1

oo
π2

// A

C

e

��

E′
q1oo

q2 //

r2

��

A

Id

��

A B
π1

oo
π2

// A

Now we require that the following diagram commutes

B

m

��

E

r1

??

p1

// A E′

r2

__

q2

oo

This is precisely the unit law for monoids. In a similar fashion we can also state that m
is associative, and combining all this stuff we get a category D and cones such that the
models of this sketches are precisely the monoids.

Geometric formulas are defined using finite limits and arbitrary colimits, and sim-
ilarly we can define geometric sketches. If all cones in some sketch are finite, then that
sketch is called geometric. Universal algebras can be defined using geometric sketches
in the same way as we defined monoids. We start by defining the maps, and since every
map has a finite arity, we only need to consider finite products. Hence, only finite cones
are needed to say that the maps have the right domain. To show the required laws, we
again only need to consider finite products and since all these laws are equational, we
can formulate it by stating that certain diagrams commute. Hence, universal algebras
can be defined using geometric sketches.

One important application of sketches is that it allows us to define definable func-
tors. For that we need some extra terminology. Given two sketches S1 = (D1, U1, V1)
and S2 = (D2, U2, V2), a sketch morphism is a functor F : D1 → D2 which sends cones
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of U1 to U2 and cocones of V1 to V2. This gives a functor from S2[C ] to S1[C ] by pre-
composition: a functor G : D2 →C is sent to G ◦ F . A sketch morphism is called rigid
if for every topos E this induced morphism is an equivalence.

The main issue for defining definable functors is that we want to have a functor for
the models in every category. To solve that, we want that the graph is definable, and
then the model can be used to give an actual functor for arbitrary interpretations.

Definition 6.2.2 (Definable Functor). Let two sketches S1 and S2 be given. Then a
definable functor from S1 to S2 is a sketch G, the graph, with sketch morphism p1 :
S1→G and p2 : S2→G such that p1 is rigid. We say that it is geometrically definable if
G is a geometric sketch.

Since a sketch morphism S→ T gives a morphism T [C]→ S [C], the arrows p1
and p2 are in the order opposite to which you would expect. To say that every point has
precisely one image, we say that p1 is rigid. For a topos E the map p1 : E[G]→ E[S1]
has a quasi-inverse s : E[S1]→ E [G], so we get a functor E[S1]→ E [G]→ E[S2] by
composition.

Let us now consider an example of a definable functor, namely the free algebra
functor. To do this, we need to describe this functor in a slightly different way, and that
construction can be described using sketches.

Example 6.2.3. In the proof of Proposition 6.1.4 we defined a functor T which assigns
to every set U the free algebra generated by U . To show that this functor is definable,
we need to make a sketch for its graph. The main point here is that the free algebra
on U can be described as a colimit. If D is the category with objects (α, x) where α is
a finite ordinal and x ∈ T (α), and arrows from (α, x) to (β , y) are functions f : α→ β
such that T ( f )(α) = β , then we can define a diagram F : D→E sending (α, x) to Uα.
Here Uα is the α-fold product of U .

To define the structure maps, note that the diagramD isω-filtered. Sinceω-filtered
colimits commute with finite limits, we can make the structure map of each function
symbol f of arity n by mapping an n-tuple ((α1, x1), . . . , (αn, xn)) into some (β , y).
Without loss of generality we can assume α1 ≥ αi for all i. Now we have inclusions
αi ⊆ α1, and we define β to be α1 and y to be f (x1, . . . , xn). With this definition all
equations of the algebra are satisfied, because they hold for T (α). One can show now
that colim F is the free T -algebra on U .

All of this can be summarized in a countable sketch, and thus the free algebra
functor is definable using a geometric sketch. Note that it is left adjoint to the forgetful
functor which can be defined using finite limits.

Lastly, we need three extra propositions which give some properties of definable
functors and sketches. The first property is similar to (1) of Proposition 6.1.4: it just
says that the category of models of some finite limit sketch is locally presentable.

Proposition 6.2.4. Let S be a sketch defined using finite limits. Then for every topos E
the category S[E] is locally presentable.

The second property is says that all functors, which are between finite limit sketches
and defined using finite limits, have a definable adjoint. The adjoint, however, can be
defined using a geometric sketch instead of a finite limit sketch.

Proposition 6.2.5. Given are sketches S1 and S2 which are defined using finite limits,
and a definable functor R from S1 to S2 which also is defined using finite limits. Then
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there is a geometrically definable functor L from S2 to S1 such that for every topos E we
have LE a RE where LE : S1[E]→ S2[E] and RE : S2[E]→ S1[E] are induced by L and
R respectively.

We will not prove this in detail, and for a detailed proof we refer the reader to
[Bek01]. Instead we will give the main ingredients of the proof. The main idea of the
proof is to use the classifying topos of a geometric theory, and for more details on this
we refer the reader to [MLM92]. The classifying topos CT of a theory T is a topos
such that for every topos E geometric morphisms from E to CT correspond with T -
models of E . All geometric theories have a classifying topos, and thus theories defined
using finite limits as well. The theorem we need to prove this statement, says that a
geometric sequent holds in every model of T iff it holds in the universal model UT in
the classifying topos. So, if we can find a classifying topos, then we can find a universal
model, and to check whether a statement holds for all models, it is sufficient to check
that it holds for the universal example. To prove Proposition 6.2.5, one checks that it
holds for the universal example, and then one can extend it to the general case.

The last property just says that definable functors between toposes preserves limits
and filtered colimits.

Proposition 6.2.6. Let sketches S1, S2 and let a definable functor F from S1 to S2 be
given such that S1, S2 and F are all defined using finite limits. Then for all toposes E the
induced functor RE : S1[E]→ S2[E] preserves filtered colimits and limits.

PROOF. By definition F has a graph G and we have sketch morphisms p1 : S1→G
and p2 : S2 → G with p1 rigid. It suffices to show that for sketches S1 and S2 with a
sketch morphism m : S1→ S2 the functor S2[E]→ S1[E] preserves filtered colimits and
limits. Note that p1 and p2 induce functors Òp1 :G[E]→ S1[E] and Òp2 :G[E]→ S2[E],
and the functor Òp1 has a quasi-inverse s. Now F is defined as Òp2 ◦ s, and if both Òp2 and
s preserve limits and filtered colimits, then we are done. To show that s preserve limits
and filtered colimits, it suffices to show that Òp1 preserve filtered colimits and limits
because

lim s(X i)∼= s(Òp1(lim s(X i)))∼= s(lim Òp1(s(X i)))∼= s(lim X i).
The next step is thus to show that for a sketch morphism m : S1→ S2 the induced

map Òm : S2[E]→ S1[E] preserves limits and colimits. WriteD1 andD2 for the diagrams
of S1 and S2 respectively. Since the sketch morphism gives a map D1 → D2, we can
form the following commutative diagram

ED2
m∗ // ED1

S2[E]

OO

m
// S1[E]

OO

Since limits and colimits in ED1 and ED2 are evaluated pointwise, the functor m∗ pre-
serves all limits and colimits. Also, the inclusion S2[E]→ ED2 preserves all limits and
colimits. If we show that the inclusion S1[E] → ED1 reflects all limits and filitered
colimits, then we are done.

So, now we are dealing with the inclusion functor S1[E]→ ED1 , and we want to
show this functor has a left adjoint. For this we start by noting that ED1 is definable using
finite limits and colimits, because we just use the diagram D1 with no further cones or
cocones. Note that the inclusion functor is definable, and hence from Proposition 6.2.5
follows that it has a left adjoint. �



CHAPTER 7

Sheafifying Model Structures

In Chapter 3 we constructed some model structures on some categories using
Quillen’s small object argument and transfer. This way one can also define a model
structure on simplicial objects in a topos [Joy83]. However, under suitable assump-
tions this happens automatically. The main point of [Bek00, Bek01] is that if we
have a model structure on structured sets, then we also get a model structure with
the same definitions on structured sheaves under suitable assumptions. One of these
assumptions says that the cofibrations and weak equivalences should be defined with
geometric formulas. This is used, because then we can use Boolean localization from
Theorem 5.4.1 to show certain formulas.

For the remaining axioms we will need a more powerful tool which we discuss
in Section 7.1. This is another variant of the tools discussed in Section 3.1, but this
time the solution set condition is crucial. Using Proposition 2.2.12 we can check for
accessibility to show this condition, and then using Propositions 6.1.4 and 6.1.6 we can
conclude.

7.1. A Theorem by Jeff Smith

In this section we discuss another theorem which we can use to detect model struc-
tures. The important thing about it is that one of the conditions is the solution set con-
dition. For the proof we need to construct the generating trivial cofibrations, and they
can be constructed by using the solution set condition.

Theorem 7.1.1. Let C be a locally presentable category, let We be a subcategory, and let
I be a set of morphisms of C . Suppose the following

(1) We is closed under retracts and satisfies the 2-out-of-3 property;
(2) We have Inj(I) ⊆We;
(3) Cof(I)∩We is closed under transfinite composition and pushout;
(4) We satisfies the solution set condition at I.

Then we have a combinatorial model structure on C where the weak equivalences are We,
the cofibrations are Cof(I) and the fibrations are Inj(Cof(I)∩We).

To prove Theorem 7.1.1 we use Theorem 3.1.4. Note that (1) and (3) in Theo-
rem 3.1.4 hold by assumption, and thus the only remaning thing is to find a generating
set for Cof(I) ∩We. We will do this in an indirect way by constructing a set J which
satisfies some solution set condition which then turns out to generate the trivial cofibra-
tions. For this, let us introduce some temporary terminology. Call a set J ⊆ Cof I ∩We
nice if every square

X //

i
��

A

w
��

Y // B

79
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with i ∈ I and w ∈We can be factored as

X

i
��

// E //

j
��

A

w
��

Y // F // B

where j ∈ J . The reason why we are interested in nice sets is given by the following
two lemmas.

Lemma 7.1.2. If J is nice, then we can factor f ∈ We as h ◦ g with h ∈ Inj(I) and
g ∈ Cell(J).

PROOF. Here we imitate the proof of Quillen’s Small Object Argument Theorem 3.1.2.
Again note that we can find an ordinal number λ such that every domain X i of a map
in I is λ-small. Define X0 to be X .

Now suppose we have an ordinal number α and Xα with hα : Xα → Y . Consider
all diagrams of the form

A

i
��

g
// Xα

hα
��

B
g ′
// Y

Because J is nice, we can find a j(i,g,g ′) ∈ J and a factorization

A

i

��

// C(i,g,g ′)

(i,g,g′)

��

// Xα

hα
��

B // D(i,g,g ′)
// Y

Now we can form coproducts acquiring the following square
∐

(i,g,g ′) C(i,g,g ′)

��

// Xα

hα

��
∐

(i,g,g ′) D(i,g,g ′)
// Y

Again the maps are defined in a similar fashion as in Theorem 3.1.2, and we form the
pushout

∐

(i,g,g ′) C(i,g,g ′)

��

// Xα

hα

��

��

∐

(i,g,g ′) D(i,g,g ′)
//

))

P

��

Y

We define Xα+1 to be P.
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Lastly, for a limit ordinal α we define Xα to be the colimit of Xβ for β < α. Now
we can factorize f as follows

X
f

//

  

Y

Xλ

>>

By construction the map X → Xλ is a J -cellular complex, so it remains to show that the
map Xλ→ Y is I -injective. So, suppose we have the following diagram

Ai

i

��

f
// Xλ

��

Bi g
// Y

Since Ai is small, we can factorize the map Ai → Xλ through some Xα with α < λ and
then we get

Ai

i

��

f
// Xα // Xα+1

��

// Xλ

}}
Bi g

// Y

By construction we have the following pushout square
∐

(i, f ,g) C(i, f ,g)

��

// Xα

hα

��

��

∐

(i, f ,g) D(i, f ,g)
//

))

Xα+1

  

Y

We have maps from Ai into
∐

(i, f ,g) C(i, f ,g) and Bi into
∐

(i, f ,g) D(i, f ,g) by construction.
We factorized the map Ai → Xα via C(i, f ,g), and we did the same for the map from
Bi → Y . This gives the required lift Bi → Xα+1, and this concludes the proof of this
lemma. �

Lemma 7.1.3. If J is nice, then we have Cof(J) = Cof(I)∩We.

PROOF. Since Cof(I)∩We is closed under transfinite composition and pushout and
J ⊆ Cof(I) ∩ We, we have that Cof(J) ⊆ Cof(I) ∩ We. Conversely, if we have f ∈
Cof(I)∩We, we can factorize it as

X
f

//

g
��

Y

Z
h

??
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where h ∈ Inj(I) and g ∈ Cell(J). We want to show that f ∈ Cof(I), and we do that by
showing that f is a retract of g. Consider the following diagram

X
g
//

f
��

Z

h
��

Y Y

Since f ∈ Cof I ∩We and h ∈ Inj(I), we have a lift Y → Z and this shows that f is a
retract of g. �

Hence, if we can find a nice set J , then it generates the trivial cofibrations, and this
will allow us to conclude the argument. To define J , let us consider all squares of the
form

A

i
��

// X

w
��

B // Y
where i ∈ I and w ∈We. Because We satisfies the solution condition at I , we can factor

A

i
��

// C //

wi

��

X

w
��

B // D // Y

where wi ∈ W . Our goal is to find a factorization for another square, namely the
following

A

i
��

// C

wi

��

B // D
First, we form the following pushout P

A

i
��

// C

i′

��
wi

��

B //

''

P

h
��

D

and note that we get h : P → D by the universal property of the pushout. Now we
factorize h as q ◦ p where q : Q → D with p ∈ Cof(I) and q ∈ Inj(I), so q is a weak
equivalence. By the 2-out-of-3 property we then have p ◦ i′ ∈ We, and we define J to
be set set of all p ◦ i′ taking one for each wi . Now we can factorize our original square
as follows

A

i
��

// C

p◦i′

��

// X

w

��

B // P // Q q
// D // Y

Hence, J is indeed a nice set, and from this we conclude Theorem 7.1.1.
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7.2. Sheafifying Homotopy

Let us start with some arbitrary topos E . As discussed before, toposes Sh(B) for
complete Boolean algebras B are useful to determine the truth of formulas in an ar-
bitrary topos. Since we have Boolean localization, we can find a surjective geometric
morphism Sh(B) → E . This adjunction preserves and reflects the truth of geometric
formulas, and thus to show that a geometric formula holds in every topos, it suffices
to show that it holds in all Sh(B). For this reason Boolean localization is a useful tool
in topos theory, because it allows us to check something for arbitrary toposes by just
checking it for certain toposes.

On the other hand, there are toposes for which this is simpler, and there are toposes
with enough points. A point of a topos is a geometric morphism Sets → E . This defi-
nition is easy to understand, because a point of a topological space X is a map ∗ → X
which gives a geometric morphism Sets → Sh(X ). We say that a topos E has enough
points iff for every map f : A→ B in E we have that f is an isomorphism if for every
point point p : Sets → E the map p∗( f ) is an isomorphism. It can be shown that a
geometric formula holds in a topos with enough points iff it holds in Sets. For these
toposes it is easier, but our focus will be the general case.

This bring us to the following idea: if we have a model structure on ‘structured
sets’, can we turn it into a model structure on ‘structured’ sheaves? More concisely, can
we sheafify model structures? For example, we have a model structure on simplicial
sets which are the simplicial objects in Sets. Can we use this to find a model structure
for simplicial objects in arbitrary toposes? Also, we have a model structure on chain
complexes, and the question is whether we can use it to find a model structure for chain
complexes of sheaves of abelian groups. In general there is no reason why this would be
true. However, if the model structure is defined using a language which is preserved by
the geometric morphisms, then the answer to the question is yes under a mild condition.
The condition says that for every topos the cofibrations must be generated by some set
which holds whenever the cofibrations are the monomorphisms.

In [Bek00] a theorem is discussed which answers this question, and using the ma-
terial discussed until now, we can readily prove the theorem. The main idea is that we
want to apply Theorem 7.1.1 to arbitrary toposes. Since the cofibrations might not be
the monomorphisms, we will need that for every topos the cofibrations are generated
by some set. Because We is defined using geometric sentences, the category of its mod-
els is locally presentable, and thus accessible. Therefore, the solution set condition is
satisfied, and this solves one of the main difficulties. Now we also assume that we have
a model structure in some elementary cases (like Sets or Sh(B)) from which we can
transfer it to arbitrary toposes. It is also not difficult to check (3), because both the
cofibrations and the weak equivalences are closed under transfinite composition and
pushout. Only (2) requires some work where we do it in two steps. First, we extend
it from Sets to presheaves, and then we solve it for arbitrary toposes by using logical
methods. For presheaves we can do it by hand, but for arbitrary toposes we can use
logical methods. Recall that ModS,W (E ) consists of all S structures which satisfy all
axioms in W .

Theorem 7.2.1. Let S be a structure defined with finite limits, and let W and C be col-
lections of geometric sentences.

(1) ModS(Sh(Sets)) is a model category with weak equivalences ModS,W (Sets) and
cofibrations ModS,C(Sets).
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(2) ModS(Sh(B)) is a model category with weak equivalences ModS,W (B) and
cofibrations ModS,C(B) whereB is a complete Boolean algebra.

(3) For every topos E there is a set IE such that ModS,C(E ) = Cof(IE ).

Then for every topos E we have a model category ModS(E )with weak equivalences ModS,W (R)
and cofibrations ModS,C(E ).

PROOF. We apply Theorem 7.1.1. Note that toposes are locally presentable, so we
can apply it. The fourth condition follows from (4) in Proposition 6.1.6 and Propo-
sition 2.2.12. With Boolean localization we can show the first property. We need to
check a statement of the form

∀ f ∀g[W ( f )∧W (g)⇒W (g ◦ f )]

where W ( f ) and W (g) are geometric, and thus this condition is a geometric sentence.
Because it holds in all toposes Sh(B), we can conclude with Boolean localization that
it holds in all toposes. Also, ModS,W (E ) is closed under colimits by (2) in Proposi-
tion 6.1.6, so if we show that retracts are colimits, then we are done. Let C be the
category with one object ∗ and an arrow g : ∗ → ∗ satisfying g ◦ g = Id . The colimit of
the diagram F which maps g to f , is a retract of f .

Next we show that (3) of Theorem 7.1.1 holds as well. Being a pushout is a geo-
metric property, so to check it we need to check a statement of the form

∀ f ∀g∀h[W ( f )∧ C( f )∧ g is a pushout of f ⇒W (g)∧ C(g)]

So again it follows from Boolean localization. To show that ModS,W (E ) ∩ModS,C(E )
is closed under transfinite composition, it suffices by (2) of Proposition 6.1.6 to show
that it is closed under composition. But this is a geometric statement, because it is of
the form

∀ f ∀g[W ( f )∧ C( f )∧W (g)∧ C(g)⇒W (g ◦ f )∧ C(g ◦ f )].

Hence, it follows from Boolean localization.
Lastly, we show condition (2) of Theorem 7.1.1. For this we need two steps: first

we show it for preshaves, and then we show it for toposes. For presheaves we use the
fact that everything is done pointwise, and for toposes we use sheafification. First note
that (2) holds for Sets, because of the first assumption.

Now consider a presheaf category E = SetsD
op

on a small category D, and any
arrow f : X → Y which is in Inj(ModS,C(E )). Since evaluation is defined by left Kan
extension, it has a left adjoint L. To check that f satisfies all sentences in W , we need
to check at every object d of D that the evaluation εd( f ) of f at d satisfies W . Thus
we need to show that εd( f ) ∈ModS,W (Sets), and because (2) holds in Sets, it suffices
to show that εd( f ) ∈ Inj(ISets). To show that εd( f ) ∈ Inj(ISets), we show that f ∈
Inj(L(ModS,C(Sets))). So, suppose that we have shown that f ∈ Inj(L(ModS,C(Sets))),
and consider the square

A //

h
��

Xd

εd ( f )

��

C // Yd
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where h ∈ ISets. By adjunction we can factor this diagram as follows

A //

h

��

L(A)d //

L(h)
��

Xd

εd ( f )

��

C // L(C)d // Yd

Since h ∈ ISets and f ∈ Inj(L(ModS,C(Sets))) by assumption, we can find a lift. Hence,
it suffices to show that f ∈ Inj(L(ModS,C(Sets))).

To show that f ∈ Inj(L(ModS,C(Sets))), we show that for g ∈ ModS,C(Sets) we
have L(g) ∈ ModS,C E . And for that we again evaluate objectwise, meaning that we
have to show for objects d of D that L(g)d ∈ ModS,C(Sets). By definition of the left
Kan extension all these L(g) are copowers of g and copowers of cofibrations are cofi-
brations. Therefore, L(g) is indeed a cofibration between presheaves from which we
can conclude (2) for presheaves.

Lastly we show that now we can conclude it for all toposes. Let E = Sh(D) be a
topos and let F = SetsD

op
. Also, take a map f ∈ Inj(ModS,C(E )). Our goal is to show

that f ∈ModS,W (E ), and for this we use sheafification. Note that we have a left exact
left adjoint a :F → E given by sheafification, and that note that f ∼= a(i( f )). Because
sheafification preserves geometric formulas, it thus suffices to show that i( f ) is a weak
equivalence. Since we know (2) holds for presheaf categories, it thus suffices to show
that i( f ) ∈ Inj(ModS,C(F )). So, consider the following square with h ∈ModS,C(F )

A

h
��

// X

i( f )
��

B // Y

Let us sheafifiy the diagram to obtain

A //

h

��

a(A)

a(h)
��

// X

f

��

B // a(B) // Y

Since a preserves the class of cofibrations, the right square has a lift which gives the
desired lift. �

In the next section we will discuss concrete examples of this theorem, but now we
look at a second version. The next theorem says that we can do the same with transfer.
However, for this we need the language of sketches and definable functors from Sec-
tion 6.2. This is because we would like to have a description of the functor for every
topos, and a sketches precisely give that. For this reason also the structures need to be
defined using sketches, because we need that to talk about definable functors. Now we
want to apply transfer on every topos, so in this case for one of the structures we al-
ready must have a model structure. To test whether the conditions of Proposition 3.2.1
hold, we need that they hold for all sheaf toposes on complete Boolean algebras.

Theorem 7.2.2. Given are two sketches S1 and S2 defined using finite limits, and a defin-
able functor R from S2-structures to S1-structures defined using finite limits. Also, let W
and C be collections of geometric sentences in the language of morphisms of S1 structures.
Suppose that
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(1) For every topos E we have a combinatorial model structure on S1[E] with weak
equivalences ModS1,W (E ) and cofibrations ModS1,C(E ).

(2) For every complete Boolean algebra B the functor S2[Sh(B)] → S1[Sh(B)]
creates a model structure on S2[Sh(B)].

Then for every topos E the functor S2[E]→ S1[E] creates a model structure on S2[E].

PROOF. As announced before, we apply transfer Proposition 3.2.1. The first con-
dition holds by assumption, the second condition holds bij Proposition 6.2.4, and the
third condition holds by Proposition 6.2.6. Note that (4) holds by Proposition 6.2.6. To
show that (5) holds, again we use Boolean localization. Since (5) holds for sheaves on
Boolean algebras, it suffices to show that it is a geometric formula. By Proposition 6.2.5
the left adjoint of L is definable with a geometric sketch. This gives that (5) is of the
form

∀ f ∀g[g is a pushout of L( f )⇒ R(g) is a weak equivalence]

Since L and W are defined using geometric formulas, this is a geometric sequent. There-
fore, by Boolean localization it holds in all toposes which allows us to conclude the
theorem. �

7.3. Examples of Sheafifying Homotopy

Now we look at how we can apply this theorem in concrete situations. The main
difficulties in applying it are finding the generating set for the cofibrations and solving
the solution set condition. In many examples the cofibrations are the monomorphisms,
and in this case we can easily apply the theorem. This is due the fact that in certain
categories we can always find generators for the monomorphisms.

Proposition 7.3.1. In a topos E the monomorphisms are the cofibrations generated by
some set I .

PROOF. Recall that toposes are locally presentable by Theorem 2.2.8.
Let S be a set of objects such that every object of E can be written as a colimit of

objects in S. Define Q to be the set of coequalizers of kernel pairs of epimorphisms
between objects in S. So, if e : G1 → G2 is an epimorphism between objects in S, then
we can form its kernel pair by forming the pullback

P
p
//

q

��

G1

e

��

G1 e
// G2

Then for Q we look at the coequalizer of p and q for all epimorphisms e : G1 → G2
between objects in S. Now define I to be the set of subobjects of objects in Q.

Let f : X → Y be a monomorphism. Define a set T to be the set of all arrows
G → Y with G ∈ S, and let λ be the cardinality. Now we define objects Pµ for µ < λ
using transfinite induction such that we can factor f as X → Pµ → Y and the arrow
X → Pµ is a monomorphism. Also, every map X → Pµ must be a I -cellular complex on
X , and we must have maps Pµ→ Pµ+1. We define P0 to be X and f is the map P0→ Y .
Next define Pµ+1. Since the set T has cardinality λ, for each µ < λwe can find a unique
f : G→ Y . By Proposition 5.1.8 we can factor this as G→Q→ Y with G→Q epi and
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Q→ Y mono. Now we can consider the diagram

Q ∩ Pµ //

��

Pµ

��

��

G // Q //

))

Q ∪ Pµ

""
Y

And we define Pµ+1 as Q ∪ Pµ. Note that Q lies in Q, because it is constructed as a
coequalizer of a kernel pair of epimorphisms. So, X → Pµ+1 is a I -cellular complex,
because it is a pushout of an I -cellular complex along a map in I . Lastly, for a limit
ordinal ν we define Pν to be the colimit of Pµ for µ < ν.

Our goal is to show that Pλ = colimµ<λ Pµ. Note that by construction we have
a monomorphism colimµ<λ Pµ → Y , and if we show that this monomorphism has a
section, then we are finished. Firstly, we need to show that the following diagram
commutes

G //

$$

colimµ<λ Pµ

��

Y

This commutes by construction. We can map G into some Pµ, and if we look at the
construction of Pµ+1, then we see it commutes. From this we can conclude that the
map will indeed be a section if we can construct it.

Secondly, we need to show that we have a map Y → colimµ<λ Pµ. If we have two
maps f1 : G1 → Y and f2 : G2 → Y , then we get two maps G1 → colimµ<λ Pµ and
G2 → colimµ<λ Pµ. Now there are two cases, because either f1 or f2 was considered
first in the construction. We have a bijection ϕ : T → λ and either ϕ( f1) < ϕ( f2) or
ϕ( f2)< ϕ( f1). If f1 was considered first, so if ϕ( f1)< ϕ( f2), then we get the diagram

G1

))

��

""

Q ∩ Pµ //

��

Pµ

��

G2
// Q // Pµ+1

All triangles commute, so the diagram

G1
//

��

colimµ<λPµ

G2

::
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commutes as well. In the other case, f2 was considered first, so ϕ( f2)< ϕ( f1), and the
we get the diagram

G1
//

��

Pµ

��

��

G2
//

((

Pµ+1

!!

Y
Since the lower two triangles commute and the map Pµ+1 → Y , it follows that the
square commutes. �

Let us now give two example applications of Theorems 7.2.1 and 7.2.2.

Example 7.3.2. Recall from Example 2.1.4 that we have a model structure on SSet.
The cofibrations are defined as the monomorphisms and by the previous proposition
these are generated by a set in every topos. Also, we can define using a geometric
statement that a map is a monomorphism. Weak equivalences between Kan complexes
are the maps which induce isomorphisms on all homotopy group, and for this we need
to say that it is both injective and surjective. So, if we have Kan complexes X and Y
and a map f : X → Y , then with this we can say using a geometric definition that f is a
weak equivalence. If we have an arbitrary 0-simplex x0 and two n-simplices xn and x ′n
whose 0-faces are x0, then xn and x ′n are homotopic if f (xn) and f (x ′n) are homotopic.
This means that f induces an injection on the homotopy groups, and similarly we can
state that f induces a surjection on the homotopy groups.

For arbitrary simplicial sets we need the Ex∞ functor. The point is that Ex∞(X ) is a
fibrant replacement of X and that Ex∞ can be defined using finite limits and a colimit.
So, if we have a simplicial map f : X → Y , then f is a weak equivalence iff Ex∞( f ) is.
With a geometric definition we can say that Ex∞( f ) is a weak equivalence, and thus
the weak equivalences of simplicial sets are definable using geometric definitions. Now
we can apply Theorem 7.2.1 to conclude this argument.

Example 7.3.3. In Section 3.2 we defined a left adjoint of the i : SAlg→ SSet, and for
Sets this could be used to transfer the model structure. This functor is also definable
which we showed in Example 6.2.3. By the previous example we have a model struc-
ture on all simplicial sheaves, and therefore we can transfer this model structure using
Theorem 7.2.2.
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