Library UniMath.CategoryTheory.Monads.Derivative
**********************************************************
Contents:
Written by: Joseph Helfer (May 2017)
- "maybe" monad (binary coproduct with a fixed object) maybe_monad
- distributive laws for pairs of monads monad_dist_laws
- in particular: the distributive law for the maybe monad and any monad deriv_dist
- composition of two monads with a distributive law monad_comp
- in particular: derivative of a monad (composing with maybe) monad_deriv
- monad morphism from the first composand to the composition of monads monad_to_comp
- in particular: monad morphism from a monad to its derivative monad_to_deriv
- left module over a monad T obtained by composing a monad having a distributive
law with T LModule_comp_laws
- in particular: the derivative of a left module over a monad LModule_deriv
- Commutation of module derivation with pullback pb_LModule_deriv_iso
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monads.LModules.
Local Open Scope cat.
Definition of distributive laws for Monads and composition of Monads
cf. Beck "Distributive laws" (1969)
distributivity law for a pair of monads
Definition monad_dist_laws (a : T ∙ S ⟹ S ∙ T) :=
(((∏ x : C, η S (T x) · a x = #T (η S x)) ×
(∏ x : C, #S (η T x) · a x = η T (S x))) ×
(∏ x : C, a (T x) · #T (a x) · μ T (S x) = #S (μ T x) · a x)) ×
(∏ x : C, #S (a x) · a (S x) · #T (μ S x) = μ S (T x) · a x).
Definition monad_dist_law1 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) := (pr1 (pr1 (pr1 l))).
Definition monad_dist_law2 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) := (pr2 (pr1 (pr1 l))).
Definition monad_dist_law3 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) := (pr2 (pr1 l)).
Definition monad_dist_law4 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) := pr2 l.
End DistrLaws.
(((∏ x : C, η S (T x) · a x = #T (η S x)) ×
(∏ x : C, #S (η T x) · a x = η T (S x))) ×
(∏ x : C, a (T x) · #T (a x) · μ T (S x) = #S (μ T x) · a x)) ×
(∏ x : C, #S (a x) · a (S x) · #T (μ S x) = μ S (T x) · a x).
Definition monad_dist_law1 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) := (pr1 (pr1 (pr1 l))).
Definition monad_dist_law2 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) := (pr2 (pr1 (pr1 l))).
Definition monad_dist_law3 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) := (pr2 (pr1 l)).
Definition monad_dist_law4 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) := pr2 l.
End DistrLaws.
composition of monads with a distributive law
Definition monad_comp_mu {C : category} {S T : Monad C} (a : T ∙ S ⟹ S ∙ T) :
(S ∙ T ∙ S ∙ T) ⟹ (S ∙ T) :=
nat_trans_comp _ _ _ (post_whisker (pre_whisker S a) T)
(nat_trans_comp _ _ _ (pre_whisker (S ∙ S) (μ T)) (post_whisker (μ S) T)).
Definition monad_comp_eta {C : category} {S T : Monad C} (a : T ∙ S ⟹ S ∙ T):
functor_identity C ⟹ S ∙ T :=
nat_trans_comp _ _ _ (η S) (pre_whisker S (η T)).
Definition monad_comp_data {C : category} {S T : Monad C} (a : T ∙ S ⟹ S ∙ T) :
disp_Monad_data (S ∙ T) :=
tpair _ (monad_comp_mu a) (monad_comp_eta a).
(S ∙ T ∙ S ∙ T) ⟹ (S ∙ T) :=
nat_trans_comp _ _ _ (post_whisker (pre_whisker S a) T)
(nat_trans_comp _ _ _ (pre_whisker (S ∙ S) (μ T)) (post_whisker (μ S) T)).
Definition monad_comp_eta {C : category} {S T : Monad C} (a : T ∙ S ⟹ S ∙ T):
functor_identity C ⟹ S ∙ T :=
nat_trans_comp _ _ _ (η S) (pre_whisker S (η T)).
Definition monad_comp_data {C : category} {S T : Monad C} (a : T ∙ S ⟹ S ∙ T) :
disp_Monad_data (S ∙ T) :=
tpair _ (monad_comp_mu a) (monad_comp_eta a).
Below are the proofs of the monad laws for the composition of monads. We prove them as separate
lemmas not only because they are somewhat lengthy, but also for the following reason: the μ and
η for this monad are defined via operations on natural transformations, rather than their value
being given explicitly at each object. However, for the proofs, it is desirable to have these
explicit expressions; the easiest way to accomplish this is to write out the statements by hand
in the desired form (as ugly as they may be).
This is also done for the same reason later in the file, where the proofs of the individual
lemmas are not as lengthy.
Here is the diagram corresponding to this proof. The outside of the diagram represents the equation
to be proved. The numbers indicate the order in which the sub-diagrams are used.
TSTSx ---------------> TTSSx -----------> TSSx ------------> TSx
^ T (a (Sx)) ^ μ T (SSx) ^ T (μ S x) ^
| | / /
|η T (STSx) |η T (TSSx) /id /
| 1 | 3 / /
a (Sx) / /
STSx --------------> TSSx ------------ 4 /
^ ^ /
| 2 /T (η S (Sx)) /
|η S (TSx) / /
| _________________/ /
|/ id /
TSx ------------------------------------------------
Context {C : category} {S T : Monad C}.
Local Lemma monad_comp_law1 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) : ∏ x : C,
(η S (T (S x))) · (η T (S (T (S x)))) · (#T (a (S x)) · (μ T (S (S x)) · #T (μ S x))) =
identity (T (S x)).
Show proof.
intro x.
rewrite <- assoc.
rewrite !(assoc ((η T) (S (T (S x))))).
rewrite <- (nat_trans_ax (η T) (S (T (S x)))).
simpl.
rewrite !assoc.
etrans.
{ do 3 apply cancel_postcomposition.
apply (monad_dist_law1 l).
}
rewrite <- (assoc (# T ((η S) (S x)))).
etrans.
{ apply cancel_postcomposition.
apply cancel_precomposition.
apply (Monad_law1).
}
rewrite id_right.
rewrite <- functor_comp.
rewrite <- functor_id.
now etrans;
try apply maponpaths;
try apply Monad_law1.
rewrite <- assoc.
rewrite !(assoc ((η T) (S (T (S x))))).
rewrite <- (nat_trans_ax (η T) (S (T (S x)))).
simpl.
rewrite !assoc.
etrans.
{ do 3 apply cancel_postcomposition.
apply (monad_dist_law1 l).
}
rewrite <- (assoc (# T ((η S) (S x)))).
etrans.
{ apply cancel_postcomposition.
apply cancel_precomposition.
apply (Monad_law1).
}
rewrite id_right.
rewrite <- functor_comp.
rewrite <- functor_id.
now etrans;
try apply maponpaths;
try apply Monad_law1.
The diagram for this proof (see above for explanation):
TSTSx ---------------> TTSSx -----------> TSSx ------------> TSx
^ T (a (Sx)) ^ μ T (SSx) ^ T (μ S x) ^
| 1 / 2 / /
|T S (η T (Sx)) / /id /
| /T (η T (SSx)) / /
| _______________/ / /
| / / /
TSSx -------------------------------- 3 /
^ /
| /
|T S (η S x) /
| id /
TSx ------------------------------------------------
Local Lemma monad_comp_law2 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) : ∏ x : C,
#T (#S ((η S x) · (η T (S x)))) · (#T (a (S x)) · (μ T (S (S x)) · #T (μ S x))) =
identity (T (S x)).
Show proof.
#T (#S ((η S x) · (η T (S x)))) · (#T (a (S x)) · (μ T (S (S x)) · #T (μ S x))) =
identity (T (S x)).
Show proof.
intro x.
rewrite !assoc.
rewrite <- functor_comp.
rewrite (functor_comp S).
rewrite <- !assoc.
etrans.
{ apply cancel_postcomposition.
apply maponpaths.
apply cancel_precomposition.
apply (monad_dist_law2 l).
}
rewrite functor_comp.
rewrite <- assoc.
rewrite (assoc (# T ((η T) (S (S x))))).
rewrite Monad_law2.
rewrite id_left.
rewrite <- functor_comp.
rewrite <- functor_id.
now etrans;
try apply maponpaths;
try apply Monad_law2.
rewrite !assoc.
rewrite <- functor_comp.
rewrite (functor_comp S).
rewrite <- !assoc.
etrans.
{ apply cancel_postcomposition.
apply maponpaths.
apply cancel_precomposition.
apply (monad_dist_law2 l).
}
rewrite functor_comp.
rewrite <- assoc.
rewrite (assoc (# T ((η T) (S (S x))))).
rewrite Monad_law2.
rewrite id_left.
rewrite <- functor_comp.
rewrite <- functor_id.
now etrans;
try apply maponpaths;
try apply Monad_law2.
Here, more enlightening than a diagram is just the "strategy" of the proof: each side of the
equation consists of some applications of the monad multiplications μ T and μ S and the
distributive law 'a'. The strategy is - (1) using repeated applications of the third and fourth
axioms for the distributive law and the naturality of μ T, μ S, and 'a' - to arrange for all the
applications of 'a' to come first, and then the applications μ T and μ S. Thus, both sides are
transformed to a composite TSTSTSx --> TTTSSSx -> TSx; then (2) the first composands are equal
by the naturality of 'a', and the second composands are equal by the naturality and
associativity of μ T and μ S.
Local Lemma monad_comp_law3 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) : ∏ x : C,
#T (#S (#T (a (S x)) · (μ T (S (S x)) · #T (μ S x)))) ·
(#T (a (S x)) · (μ T (S (S x)) · #T (μ S x))) =
#T (a (S (T (S x)))) · (μ T (S (S (T (S x)))) · #T (μ S (T (S x)))) ·
(#T (a (S x)) · (μ T (S (S x)) · #T (μ S x))).
Show proof.
Definition monad_comp {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) : Monad C.
Show proof.
#T (#S (#T (a (S x)) · (μ T (S (S x)) · #T (μ S x)))) ·
(#T (a (S x)) · (μ T (S (S x)) · #T (μ S x))) =
#T (a (S (T (S x)))) · (μ T (S (S (T (S x)))) · #T (μ S (T (S x)))) ·
(#T (a (S x)) · (μ T (S (S x)) · #T (μ S x))).
Show proof.
intro x.
rewrite assoc.
rewrite <- functor_comp.
rewrite <- nat_trans_ax.
do 2 rewrite (functor_comp S).
rewrite (assoc _ _ (#S ((μ T) (S x)))).
rewrite <- (assoc _ (#S ((μ T) (S x))) _).
rewrite <- (monad_dist_law3 l).
rewrite <- assoc.
rewrite <- (assoc (a (T (S x)))).
rewrite (assoc _ (a (T (S x)))).
simpl.
etrans.
{ apply cancel_postcomposition.
apply maponpaths.
apply cancel_precomposition.
apply cancel_postcomposition.
apply (nat_trans_ax a).
}
rewrite <- assoc.
rewrite (assoc _ (# T (a (S x)))).
etrans.
{ apply cancel_postcomposition.
apply maponpaths.
do 2 apply cancel_precomposition.
apply cancel_postcomposition.
apply (! (functor_comp T _ _)).
}
etrans.
{ apply cancel_postcomposition.
apply maponpaths.
do 2 apply cancel_precomposition.
apply cancel_postcomposition.
apply maponpaths.
apply (nat_trans_ax a).
}
rewrite <- assoc.
rewrite <- (assoc _ (# T ((μ S) (T (S x))))).
rewrite (assoc (# T ((μ S) (T (S x))))).
rewrite <- functor_comp.
rewrite <- (monad_dist_law4 l).
rewrite (assoc ((μ T) (S (S (T (S x)))))).
rewrite <- (nat_trans_ax (μ T)).
rewrite !functor_comp.
rewrite !assoc.
rewrite <- functor_comp.
etrans.
{ do 5 apply cancel_postcomposition.
apply maponpaths.
apply (nat_trans_ax a).
}
do 2 rewrite <- assoc.
rewrite (assoc (# T ((μ T) (S (S x))))).
rewrite <- !(functor_comp T ((μ T) (S (S x)))).
rewrite <- (nat_trans_ax (μ T)).
rewrite !functor_comp.
rewrite !assoc.
simpl.
rewrite <- (assoc _ (# T (# T (# T (# S ((μ S) x)))))).
rewrite <- !functor_comp.
rewrite (@Monad_law3 C S).
rewrite !functor_comp.
rewrite !assoc.
rewrite <- (assoc _ (# T ((μ T) (S x)))).
rewrite (@Monad_law3 C T).
apply pathsinv0.
rewrite <- (assoc _ ((μ T) (T (S (S x))))).
rewrite <- nat_trans_ax.
now rewrite !assoc.
rewrite assoc.
rewrite <- functor_comp.
rewrite <- nat_trans_ax.
do 2 rewrite (functor_comp S).
rewrite (assoc _ _ (#S ((μ T) (S x)))).
rewrite <- (assoc _ (#S ((μ T) (S x))) _).
rewrite <- (monad_dist_law3 l).
rewrite <- assoc.
rewrite <- (assoc (a (T (S x)))).
rewrite (assoc _ (a (T (S x)))).
simpl.
etrans.
{ apply cancel_postcomposition.
apply maponpaths.
apply cancel_precomposition.
apply cancel_postcomposition.
apply (nat_trans_ax a).
}
rewrite <- assoc.
rewrite (assoc _ (# T (a (S x)))).
etrans.
{ apply cancel_postcomposition.
apply maponpaths.
do 2 apply cancel_precomposition.
apply cancel_postcomposition.
apply (! (functor_comp T _ _)).
}
etrans.
{ apply cancel_postcomposition.
apply maponpaths.
do 2 apply cancel_precomposition.
apply cancel_postcomposition.
apply maponpaths.
apply (nat_trans_ax a).
}
rewrite <- assoc.
rewrite <- (assoc _ (# T ((μ S) (T (S x))))).
rewrite (assoc (# T ((μ S) (T (S x))))).
rewrite <- functor_comp.
rewrite <- (monad_dist_law4 l).
rewrite (assoc ((μ T) (S (S (T (S x)))))).
rewrite <- (nat_trans_ax (μ T)).
rewrite !functor_comp.
rewrite !assoc.
rewrite <- functor_comp.
etrans.
{ do 5 apply cancel_postcomposition.
apply maponpaths.
apply (nat_trans_ax a).
}
do 2 rewrite <- assoc.
rewrite (assoc (# T ((μ T) (S (S x))))).
rewrite <- !(functor_comp T ((μ T) (S (S x)))).
rewrite <- (nat_trans_ax (μ T)).
rewrite !functor_comp.
rewrite !assoc.
simpl.
rewrite <- (assoc _ (# T (# T (# T (# S ((μ S) x)))))).
rewrite <- !functor_comp.
rewrite (@Monad_law3 C S).
rewrite !functor_comp.
rewrite !assoc.
rewrite <- (assoc _ (# T ((μ T) (S x)))).
rewrite (@Monad_law3 C T).
apply pathsinv0.
rewrite <- (assoc _ ((μ T) (T (S (S x))))).
rewrite <- nat_trans_ax.
now rewrite !assoc.
Definition monad_comp {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) : Monad C.
Show proof.
exists (S ∙ T).
exists (monad_comp_data a).
exact (make_dirprod (make_dirprod (monad_comp_law1 l) (monad_comp_law2 l)) (monad_comp_law3 l)).
exists (monad_comp_data a).
exact (make_dirprod (make_dirprod (monad_comp_law1 l) (monad_comp_law2 l)) (monad_comp_law3 l)).
morphism from the factor T to the composite S ∙ T of two monads
Definition monad_to_comp_data {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) :
T ⟹ monad_comp l := post_whisker (η S) T.
T ⟹ monad_comp l := post_whisker (η S) T.
We prove the monad morphism laws as separate lemmas for the reason explained in the comment
near the beginning of the file
The diagram for this proof (see above for explanation):
TTx------------------------------------------------------------------->Tx
| \ μ T x |
| ¯¯¯¯¯¯¯¯¯¯¯¯¯\ |
|T (η S (Tx)) \T (T (η S x) 5 T (η S x)|
| 2 \ |
v T (a x) v id μ T (Sx) |
TSTx----------------TTSx------------------TTSx--------------------- |
| | ^ \ |
|T S T (η S x) |T T S (η S x) / \ |
| | _____________/ T T (μ S x) 3 \ |
| 1 | 4 / \ |
v v / v v
TSTSx-------------->TTSSx-------------------------->TSSx-------------->TSx
T (a (Sx)) μ T (SSx) T (μ S x)
Local Lemma monad_to_comp_law1 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) :
∏ x : C,
μ T x · #T (η S x) =
#T (η S (T x)) · #T (#S (#T (η S x))) ·
(#T (a (S x)) · (μ T (S (S x)) · #T (μ S x))).
Show proof.
Local Definition monad_to_comp_law2 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) :
∏ x : C, η T x · #T (η S x) = η S x · (η T (S x)).
Show proof.
Definition monad_to_comp {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) :
Monad_Mor T (monad_comp l) :=
(monad_to_comp_data l,, make_dirprod (monad_to_comp_law1 l) (monad_to_comp_law2 l)).
End comp_def.
∏ x : C,
μ T x · #T (η S x) =
#T (η S (T x)) · #T (#S (#T (η S x))) ·
(#T (a (S x)) · (μ T (S (S x)) · #T (μ S x))).
Show proof.
intro x.
rewrite <- assoc.
rewrite (assoc (# T (# S (# T ((η S) x))))).
rewrite <- functor_comp.
apply pathsinv0.
etrans.
{ apply cancel_precomposition.
apply cancel_postcomposition.
apply maponpaths.
apply (nat_trans_ax a).
}
rewrite functor_comp.
rewrite !assoc.
rewrite <- functor_comp.
rewrite (monad_dist_law1 l).
rewrite <- !assoc.
rewrite <- (nat_trans_ax (μ T) (S (S x))).
rewrite (assoc (# T (# T (# S ((η S) x))))).
simpl.
rewrite <- !functor_comp.
etrans.
{ apply cancel_precomposition.
apply cancel_postcomposition.
do 2 apply maponpaths.
apply Monad_law2.
}
rewrite !functor_id.
rewrite id_left.
now rewrite <- (nat_trans_ax (μ T) x).
rewrite <- assoc.
rewrite (assoc (# T (# S (# T ((η S) x))))).
rewrite <- functor_comp.
apply pathsinv0.
etrans.
{ apply cancel_precomposition.
apply cancel_postcomposition.
apply maponpaths.
apply (nat_trans_ax a).
}
rewrite functor_comp.
rewrite !assoc.
rewrite <- functor_comp.
rewrite (monad_dist_law1 l).
rewrite <- !assoc.
rewrite <- (nat_trans_ax (μ T) (S (S x))).
rewrite (assoc (# T (# T (# S ((η S) x))))).
simpl.
rewrite <- !functor_comp.
etrans.
{ apply cancel_precomposition.
apply cancel_postcomposition.
do 2 apply maponpaths.
apply Monad_law2.
}
rewrite !functor_id.
rewrite id_left.
now rewrite <- (nat_trans_ax (μ T) x).
Local Definition monad_to_comp_law2 {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) :
∏ x : C, η T x · #T (η S x) = η S x · (η T (S x)).
Show proof.
Definition monad_to_comp {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) :
Monad_Mor T (monad_comp l) :=
(monad_to_comp_data l,, make_dirprod (monad_to_comp_law1 l) (monad_to_comp_law2 l)).
End comp_def.
Section maybe_def.
Context {C : category} (o : C) (co : BinCoproducts C).
Definition maybe_functor : functor C C :=
constcoprod_functor1 co o.
Context {C : category} (o : C) (co : BinCoproducts C).
Definition maybe_functor : functor C C :=
constcoprod_functor1 co o.
maybe_functor is the same as UniMath.SubstitutionSystems.SignatureExamples.genopt,
which is introduced there only by Let, and a different notion of distributive law
is studied
Definition maybe_mu : maybe_functor ∙ maybe_functor ⟹ maybe_functor :=
coproduct_nat_trans C C co (constant_functor C C o) maybe_functor maybe_functor
(coproduct_nat_trans_in1 C C co (constant_functor C C o)
(functor_identity C))
(nat_trans_id maybe_functor).
Definition maybe_eta : functor_identity C ⟹ maybe_functor :=
coproduct_nat_trans_in2 C C co (constant_functor C C o) (functor_identity C).
Definition maybe_monad_data : disp_Monad_data maybe_functor := maybe_mu ,, maybe_eta.
We prove the monad laws as separate lemmas for the reason explained in the comment
near the beginning of the file
Local Lemma maybe_monad_law1 : ∏ c : C,
BinCoproductIn2 (co o (co o c)) ·
BinCoproductArrow _ (BinCoproductIn1 (co o c)) (identity (co o c)) =
identity (co o c).
Show proof.
Local Lemma maybe_monad_law2 : ∏ c : C,
BinCoproductOfArrows C (co o c) (co o (co o c))
(identity o) (BinCoproductIn2 (co o c)) ·
BinCoproductArrow _ (BinCoproductIn1 (co o c)) (identity (co o c)) =
identity (co o c).
Show proof.
intro c.
now rewrite precompWithBinCoproductArrow, id_left,
<- (id_right (BinCoproductIn1 (co o c))), <- BinCoproductArrowEta.
now rewrite precompWithBinCoproductArrow, id_left,
<- (id_right (BinCoproductIn1 (co o c))), <- BinCoproductArrowEta.
Local Lemma maybe_monad_law3 : ∏ c : C,
BinCoproductOfArrows C (co o (co o (co o c))) (co o (co o c))
(identity o)
(BinCoproductArrow (co o (co o c)) (BinCoproductIn1 (co o c)) (identity (co o c))) ·
BinCoproductArrow _ (BinCoproductIn1 (co o c)) (identity (co o c)) =
BinCoproductArrow _ (BinCoproductIn1 (co o (co o c))) (identity (co o (co o c))) ·
BinCoproductArrow _ (BinCoproductIn1 (co o c)) (identity (co o c)).
Show proof.
intro c.
now rewrite precompWithBinCoproductArrow, postcompWithBinCoproductArrow,
!id_right, postcompWithBinCoproductArrow,
!id_left, BinCoproductIn1Commutes.
now rewrite precompWithBinCoproductArrow, postcompWithBinCoproductArrow,
!id_right, postcompWithBinCoproductArrow,
!id_left, BinCoproductIn1Commutes.
Definition maybe_monad : Monad C.
Show proof.
exists maybe_functor.
exists maybe_monad_data.
exact (make_dirprod (make_dirprod maybe_monad_law1 maybe_monad_law2) maybe_monad_law3).
exists maybe_monad_data.
exact (make_dirprod (make_dirprod maybe_monad_law1 maybe_monad_law2) maybe_monad_law3).
Definition of the derivative of a monad, i.e. precomposing with the maybe monad
Section deriv_def.
Definition functor_deriv {D : category}
(T : functor C D) : functor C D := maybe_monad ∙ T.
Definition functor_deriv {D : category}
(T : functor C D) : functor C D := maybe_monad ∙ T.
The distributive law for any monad with the Maybe monad. This is the obvious map
(TX + Y) -> T (X + Y) - i.e., T(in1) on the first component and (in2 · η T)
on the second component
Definition deriv_dist (T : Monad C) : (T ∙ maybe_monad) ⟹ (maybe_monad ∙ T) :=
coproduct_nat_trans C C co (constant_functor C C o) T (functor_deriv T)
(nat_trans_comp _ _ _
(coproduct_nat_trans_in1 C C co (constant_functor C C o)
(functor_identity C))
(pre_whisker maybe_monad (η T)))
(post_whisker (coproduct_nat_trans_in2 C C co (constant_functor C C o)
(functor_identity C)) T).
coproduct_nat_trans C C co (constant_functor C C o) T (functor_deriv T)
(nat_trans_comp _ _ _
(coproduct_nat_trans_in1 C C co (constant_functor C C o)
(functor_identity C))
(pre_whisker maybe_monad (η T)))
(post_whisker (coproduct_nat_trans_in2 C C co (constant_functor C C o)
(functor_identity C)) T).
We prove the distributive law axioms as separate lemmas for the reason explained in the comment
near the beginning of the file
Local Lemma deriv_dist_law1 (T : Monad C) : ∏ x : C,
BinCoproductIn2 (co o (T x)) ·
BinCoproductArrow _ (BinCoproductIn1 _ · η T _) (#T (BinCoproductIn2 _)) =
#T (BinCoproductIn2 (co o x)).
Show proof.
Local Lemma deriv_dist_law2 (T : Monad C) : ∏ x : C,
BinCoproductOfArrows C (co o x) (co o (T x)) (identity o) (η T x) ·
BinCoproductArrow _ (BinCoproductIn1 _ · η T (co o x)) (#T (BinCoproductIn2 _)) =
η T (co o x).
Show proof.
intro x.
rewrite precompWithBinCoproductArrow.
rewrite id_left.
etrans.
{ apply maponpaths.
apply (!(nat_trans_ax (η T) _ _ _)).
}
now rewrite <- BinCoproductArrowEta.
rewrite precompWithBinCoproductArrow.
rewrite id_left.
etrans.
{ apply maponpaths.
apply (!(nat_trans_ax (η T) _ _ _)).
}
now rewrite <- BinCoproductArrowEta.
Local Lemma deriv_dist_law3 (T : Monad C) : ∏ x : C,
BinCoproductArrow _ (BinCoproductIn1 _ · η T (co o (T x))) (#T (BinCoproductIn2 _)) ·
#T (BinCoproductArrow _ (BinCoproductIn1 _ · η T (co o x)) (#T (BinCoproductIn2 _))) ·
μ T (co o x) =
BinCoproductOfArrows C (co o (T (T x))) (co o (T x)) (identity o) (μ T x) ·
BinCoproductArrow _ (BinCoproductIn1 _ · η T (co o x)) (#T (BinCoproductIn2 _)).
Show proof.
intro x.
do 2 rewrite postcompWithBinCoproductArrow.
rewrite <- functor_comp.
rewrite BinCoproductIn2Commutes.
rewrite <- (assoc (BinCoproductIn1 (co o (T x)))).
rewrite <- (nat_trans_ax (η T) (co o (T x))).
rewrite (assoc (BinCoproductIn1 (co o (T x)))).
rewrite <- (assoc _ ((η T) (T (co o x)))).
rewrite Monad_law1.
simpl.
rewrite BinCoproductIn1Commutes.
rewrite precompWithBinCoproductArrow.
rewrite id_left.
rewrite id_right.
now rewrite <- (nat_trans_ax (μ T) x).
do 2 rewrite postcompWithBinCoproductArrow.
rewrite <- functor_comp.
rewrite BinCoproductIn2Commutes.
rewrite <- (assoc (BinCoproductIn1 (co o (T x)))).
rewrite <- (nat_trans_ax (η T) (co o (T x))).
rewrite (assoc (BinCoproductIn1 (co o (T x)))).
rewrite <- (assoc _ ((η T) (T (co o x)))).
rewrite Monad_law1.
simpl.
rewrite BinCoproductIn1Commutes.
rewrite precompWithBinCoproductArrow.
rewrite id_left.
rewrite id_right.
now rewrite <- (nat_trans_ax (μ T) x).
Local Lemma deriv_dist_law4 (T : Monad C) : ∏ x : C,
BinCoproductOfArrows C (co o (co o (T x))) (co o (T (co o x))) (identity o)
(BinCoproductArrow _ (BinCoproductIn1 _ · η T (co o x))
(#T (BinCoproductIn2 _))) ·
BinCoproductArrow _ (BinCoproductIn1 _ · η T (co o (co o x))) (#T (BinCoproductIn2 _)) ·
#T (BinCoproductArrow _ (BinCoproductIn1 _) (identity _)) =
BinCoproductArrow (co o (co o (T x))) (BinCoproductIn1 _) (identity (co o (T x))) ·
BinCoproductArrow (co o (T x)) (BinCoproductIn1 (co o x) · η T (co o x))
(#T (BinCoproductIn2 _)).
Show proof.
intro x.
rewrite precompWithBinCoproductArrow.
rewrite postcompWithBinCoproductArrow.
rewrite <- (assoc _ (# T (BinCoproductIn2 (co o (co o x))))).
rewrite <- functor_comp.
rewrite BinCoproductIn2Commutes.
rewrite functor_id.
rewrite id_right.
rewrite id_left.
rewrite <- assoc.
rewrite <- (nat_trans_ax (η T) (co o (co o x))).
simpl.
rewrite assoc.
rewrite BinCoproductIn1Commutes.
rewrite postcompWithBinCoproductArrow.
rewrite id_left.
now rewrite BinCoproductIn1Commutes.
rewrite precompWithBinCoproductArrow.
rewrite postcompWithBinCoproductArrow.
rewrite <- (assoc _ (# T (BinCoproductIn2 (co o (co o x))))).
rewrite <- functor_comp.
rewrite BinCoproductIn2Commutes.
rewrite functor_id.
rewrite id_right.
rewrite id_left.
rewrite <- assoc.
rewrite <- (nat_trans_ax (η T) (co o (co o x))).
simpl.
rewrite assoc.
rewrite BinCoproductIn1Commutes.
rewrite postcompWithBinCoproductArrow.
rewrite id_left.
now rewrite BinCoproductIn1Commutes.
Definition deriv_dist_is_monad_dist (T : Monad C) : monad_dist_laws (deriv_dist T) :=
make_dirprod (make_dirprod (make_dirprod (deriv_dist_law1 T) (deriv_dist_law2 T))
(deriv_dist_law3 T))
(deriv_dist_law4 T).
Definition monad_deriv (T: Monad C) : Monad C := monad_comp (deriv_dist_is_monad_dist T).
the morphism from a monad to its derivative
Definition monad_to_deriv (T : Monad C) : Monad_Mor T (monad_deriv T) :=
monad_to_comp (deriv_dist_is_monad_dist T).
monad_to_comp (deriv_dist_is_monad_dist T).
derivative of a left module over a monad
Lemma LModule_comp_law1 {D : category} {T : Monad C} {S : Monad C}
{a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) (L : LModule T D) : ∏ x : C,
#L (#S (η T x)) · (#L (a x) · lm_mult T L (S x)) = identity (L (S x)).
Show proof.
Lemma LModule_comp_law2 {D : category} {T : Monad C} {S : Monad C}
{a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) (L : LModule T D) : ∏ x : C,
#L (#S (μ T x)) · (#L (a x) · lm_mult T L (S x)) =
(#L (a (T x)) · lm_mult T L (S (T x))) · (#L (a x) · lm_mult T L (S x)).
Show proof.
Definition LModule_comp_data {D : category} {T : Monad C} {S : Monad C} (a : T ∙ S ⟹ S ∙ T)
(L : LModule T D) : LModule_data T D :=
(S ∙ L,, nat_trans_comp _ _ _ (post_whisker a L) (pre_whisker S (lm_mult T L))).
Definition LModule_comp_laws {D : category} {T : Monad C} {S : Monad C}
{a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) (L : LModule T D) :
(LModule_laws T (LModule_comp_data a L)) := make_dirprod (LModule_comp_law1 l L)
(LModule_comp_law2 l L).
Definition LModule_deriv {D : category} {T : Monad C} (L : LModule T D) : LModule T D :=
(LModule_comp_data (deriv_dist T) L,, LModule_comp_laws (deriv_dist_is_monad_dist T) L).
End deriv_def.
End maybe_def.
{a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) (L : LModule T D) : ∏ x : C,
#L (#S (η T x)) · (#L (a x) · lm_mult T L (S x)) = identity (L (S x)).
Show proof.
Lemma LModule_comp_law2 {D : category} {T : Monad C} {S : Monad C}
{a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) (L : LModule T D) : ∏ x : C,
#L (#S (μ T x)) · (#L (a x) · lm_mult T L (S x)) =
(#L (a (T x)) · lm_mult T L (S (T x))) · (#L (a x) · lm_mult T L (S x)).
Show proof.
intro x.
rewrite assoc.
rewrite <- functor_comp.
rewrite <- (monad_dist_law3 l).
rewrite !functor_comp.
rewrite <- assoc.
rewrite (LModule_law2 T (S x)).
rewrite assoc.
rewrite <- (assoc _ (#L (#T (a x)))).
etrans.
{ apply cancel_postcomposition.
apply cancel_precomposition.
apply (nat_trans_ax (lm_mult T L)).
}
now rewrite !assoc.
rewrite assoc.
rewrite <- functor_comp.
rewrite <- (monad_dist_law3 l).
rewrite !functor_comp.
rewrite <- assoc.
rewrite (LModule_law2 T (S x)).
rewrite assoc.
rewrite <- (assoc _ (#L (#T (a x)))).
etrans.
{ apply cancel_postcomposition.
apply cancel_precomposition.
apply (nat_trans_ax (lm_mult T L)).
}
now rewrite !assoc.
Definition LModule_comp_data {D : category} {T : Monad C} {S : Monad C} (a : T ∙ S ⟹ S ∙ T)
(L : LModule T D) : LModule_data T D :=
(S ∙ L,, nat_trans_comp _ _ _ (post_whisker a L) (pre_whisker S (lm_mult T L))).
Definition LModule_comp_laws {D : category} {T : Monad C} {S : Monad C}
{a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a) (L : LModule T D) :
(LModule_laws T (LModule_comp_data a L)) := make_dirprod (LModule_comp_law1 l L)
(LModule_comp_law2 l L).
Definition LModule_deriv {D : category} {T : Monad C} (L : LModule T D) : LModule T D :=
(LModule_comp_data (deriv_dist T) L,, LModule_comp_laws (deriv_dist_is_monad_dist T) L).
End deriv_def.
End maybe_def.
Derivation on modules commutes with the pullback: if m is a monad morphism, then m*(M')
is isomorphic to m*(M)'
Section pullback_deriv.
Context {C : category}
(o : C)
(bcpC : limits.bincoproducts.BinCoproducts C )
{D : category}.
Let MOD (R : Monad C) := (category_LModule R D).
Context {R S : Monad C} (f : Monad_Mor R S) (M : LModule S D).
Local Notation "M '" := (LModule_deriv o bcpC M) (at level 30).
Local Notation pb_d := (pb_LModule f (M ')).
Local Notation d_pb := ((pb_LModule f M ) ').
Context {C : category}
(o : C)
(bcpC : limits.bincoproducts.BinCoproducts C )
{D : category}.
Let MOD (R : Monad C) := (category_LModule R D).
Context {R S : Monad C} (f : Monad_Mor R S) (M : LModule S D).
Local Notation "M '" := (LModule_deriv o bcpC M) (at level 30).
Local Notation pb_d := (pb_LModule f (M ')).
Local Notation d_pb := ((pb_LModule f M ) ').
Pointwise equality of the involved multiplication
Lemma pb_LModule_deriv_eq_mult c :
# M (BinCoproductOfArrows C (bcpC o (R c)) (bcpC o (S c)) (identity o) (pr1 (pr1 f) c)) ·
(# (pr1 M)
(BinCoproductArrow (bcpC o (S c)) (BinCoproductIn1 (bcpC o c) · pr1 (η S) (bcpC o c))
(# (pr1 (pr1 S)) (BinCoproductIn2 (bcpC o c)))) · pr1 (lm_mult S M) (bcpC o c)) =
# (pr1 M)
(BinCoproductArrow (bcpC o (R c)) (BinCoproductIn1 (bcpC o c) · pr1 (η R) (bcpC o c))
(# (pr1 (pr1 R)) (BinCoproductIn2 (bcpC o c)))) · (# (pr1 M) (pr1 (pr1 f) (bcpC o c)) ·
(lm_mult S M) (bcpC o c)).
Show proof.
iso (C := MOD R) pb_d d_pb :=
LModule_same_func_iso
(pb_LModule_laws f (M '))
(LModule_comp_laws (deriv_dist_is_monad_dist o bcpC R) (pb_LModule f M))
pb_LModule_deriv_eq_mult.
End pullback_deriv.
# M (BinCoproductOfArrows C (bcpC o (R c)) (bcpC o (S c)) (identity o) (pr1 (pr1 f) c)) ·
(# (pr1 M)
(BinCoproductArrow (bcpC o (S c)) (BinCoproductIn1 (bcpC o c) · pr1 (η S) (bcpC o c))
(# (pr1 (pr1 S)) (BinCoproductIn2 (bcpC o c)))) · pr1 (lm_mult S M) (bcpC o c)) =
# (pr1 M)
(BinCoproductArrow (bcpC o (R c)) (BinCoproductIn1 (bcpC o c) · pr1 (η R) (bcpC o c))
(# (pr1 (pr1 R)) (BinCoproductIn2 (bcpC o c)))) · (# (pr1 M) (pr1 (pr1 f) (bcpC o c)) ·
(lm_mult S M) (bcpC o c)).
Show proof.
repeat rewrite assoc.
apply cancel_postcomposition.
do 2 rewrite <- functor_comp.
apply maponpaths.
etrans;[ apply precompWithBinCoproductArrow|].
rewrite id_left.
rewrite postcompWithBinCoproductArrow.
apply map_on_two_paths.
- rewrite <- assoc.
apply cancel_precomposition.
apply pathsinv0.
apply Monad_Mor_η.
- apply pathsinv0.
apply nat_trans_ax.
Definition pb_LModule_deriv_iso :apply cancel_postcomposition.
do 2 rewrite <- functor_comp.
apply maponpaths.
etrans;[ apply precompWithBinCoproductArrow|].
rewrite id_left.
rewrite postcompWithBinCoproductArrow.
apply map_on_two_paths.
- rewrite <- assoc.
apply cancel_precomposition.
apply pathsinv0.
apply Monad_Mor_η.
- apply pathsinv0.
apply nat_trans_ax.
iso (C := MOD R) pb_d d_pb :=
LModule_same_func_iso
(pb_LModule_laws f (M '))
(LModule_comp_laws (deriv_dist_is_monad_dist o bcpC R) (pb_LModule f M))
pb_LModule_deriv_eq_mult.
End pullback_deriv.