Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.MonoidalFunctorsTensored
Monoidal functors
behaviour w.r.t. to swapped tensor products added by Ralph Matthes in 2019, then iso changed to z_iso in 2021
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.MonoidalCategoriesTensored.
Require Import UniMath.CategoryTheory.whiskering.
Local Open Scope cat.
Section Monoidal_Functor.
Context (Mon_C Mon_D : monoidal_cat).
Local Definition tensor_C := monoidal_cat_tensor Mon_C.
Notation "X ⊗_C Y" := (tensor_C (X , Y)) (at level 31).
Notation "f #⊗_C g" := (# tensor_C (f #, g)) (at level 31).
Local Definition I_C := monoidal_cat_unit Mon_C.
Local Definition α_C := monoidal_cat_associator Mon_C.
Local Definition λ_C := monoidal_cat_left_unitor Mon_C.
Local Definition ρ_C := monoidal_cat_right_unitor Mon_C.
Local Definition tensor_D := monoidal_cat_tensor Mon_D.
Notation "X ⊗_D Y" := (tensor_D (X , Y)) (at level 31).
Notation "f #⊗_D g" := (# tensor_D (f #, g)) (at level 31).
Local Definition I_D := monoidal_cat_unit Mon_D.
Local Definition α_D := monoidal_cat_associator Mon_D.
Local Definition λ_D := monoidal_cat_left_unitor Mon_D.
Local Definition ρ_D := monoidal_cat_right_unitor Mon_D.
Section Monoidal_Functor_Conditions.
Context (F : Mon_C ⟶ Mon_D).
Definition monoidal_functor_map_dom : category_binproduct Mon_C Mon_C ⟶ Mon_D :=
functor_composite (pair_functor F F) tensor_D.
Lemma monoidal_functor_map_dom_ok: functor_on_objects monoidal_functor_map_dom =
λ c, F (ob1 c) ⊗_D F (ob2 c).
Show proof.
Definition monoidal_functor_map_codom : category_binproduct Mon_C Mon_C ⟶ Mon_D :=
functor_composite tensor_C F.
Lemma monoidal_functor_map_codom_ok: functor_on_objects monoidal_functor_map_codom =
λ c, F (ob1 c ⊗_C ob2 c).
Show proof.
Definition monoidal_functor_map :=
monoidal_functor_map_dom ⟹ monoidal_functor_map_codom.
Definition monoidal_functor_map_funclass (μ : monoidal_functor_map) :
∏ x : ob (Mon_C ⊠ Mon_C), monoidal_functor_map_dom x --> monoidal_functor_map_codom x
:= pr1 μ.
Coercion monoidal_functor_map_funclass : monoidal_functor_map >-> Funclass.
Definition monoidal_functor_associativity (μ : monoidal_functor_map) :=
∏ (x y z : Mon_C),
μ (x, y) #⊗_D id F(z) · μ (x ⊗_C y, z) · #F (α_C ((x, y), z))
=
α_D ((F x, F y), F z) · id (F x) #⊗_D μ (y, z) · μ (x, y ⊗_C z).
Definition monoidal_functor_unitality (ϵ : I_D --> F I_C) (μ : monoidal_functor_map) :=
∏ (x : Mon_C),
(λ_D (F x) = ϵ #⊗_D (id (F x)) · μ (I_C, x) · #F (λ_C x))
×
(ρ_D (F x) = (id (F x)) #⊗_D ϵ · μ (x, I_C) · #F (ρ_C x)).
End Monoidal_Functor_Conditions.
Definition lax_monoidal_functor : UU :=
∑ F : Mon_C ⟶ Mon_D, ∑ ϵ : I_D --> F I_C, ∑ μ : monoidal_functor_map F,
(monoidal_functor_associativity F μ) × (monoidal_functor_unitality F ϵ μ).
Definition make_lax_monoidal_functor (F : Mon_C ⟶ Mon_D) (ϵ : I_D --> F I_C)
(μ : monoidal_functor_map F) (Hass: monoidal_functor_associativity F μ)
(Hunit: monoidal_functor_unitality F ϵ μ): lax_monoidal_functor :=
(F,, (ϵ,, (μ,, (Hass,, Hunit)))).
Definition lax_monoidal_functor_functor (lmF : lax_monoidal_functor) : Mon_C ⟶ Mon_D := pr1 lmF.
Coercion lax_monoidal_functor_functor : lax_monoidal_functor >-> functor.
Definition lax_monoidal_functor_ϵ (lmF : lax_monoidal_functor) :
I_D --> lax_monoidal_functor_functor lmF I_C
:= pr1 (pr2 lmF).
Definition lax_monoidal_functor_μ (lmF : lax_monoidal_functor) :
monoidal_functor_map (lax_monoidal_functor_functor lmF)
:= pr1 (pr2 (pr2 lmF)).
Definition lax_monoidal_functor_assoc (lmF : lax_monoidal_functor) :
monoidal_functor_associativity (lax_monoidal_functor_functor lmF) (lax_monoidal_functor_μ lmF)
:= pr1 (pr2 (pr2 (pr2 lmF))).
Definition lax_monoidal_functor_unital (lmF : lax_monoidal_functor) :
monoidal_functor_unitality (lax_monoidal_functor_functor lmF) (lax_monoidal_functor_ϵ lmF) (lax_monoidal_functor_μ lmF)
:= pr2 (pr2 (pr2 (pr2 lmF))).
Definition strong_monoidal_functor : UU :=
∑ lmF : lax_monoidal_functor,
(is_z_isomorphism (lax_monoidal_functor_ϵ lmF))
×
(is_nat_z_iso (lax_monoidal_functor_μ lmF)).
Definition strong_monoidal_functor_lax_monoidal_functor (smF : strong_monoidal_functor) : lax_monoidal_functor
:= pr1 smF.
Coercion strong_monoidal_functor_lax_monoidal_functor : strong_monoidal_functor >-> lax_monoidal_functor.
Definition strong_monoidal_functor_ϵ_is_z_iso (smF : strong_monoidal_functor) :
is_z_isomorphism (lax_monoidal_functor_ϵ smF)
:= pr1 (pr2 smF).
Definition strong_monoidal_functor_μ_is_nat_z_iso (smF : strong_monoidal_functor) :
is_nat_z_iso (lax_monoidal_functor_μ smF)
:= pr2 (pr2 smF).
Definition strong_monoidal_functor_ϵ (smF : strong_monoidal_functor) :
z_iso I_D (lax_monoidal_functor_functor smF I_C)
:= make_z_iso _ _ (strong_monoidal_functor_ϵ_is_z_iso smF).
Definition strong_monoidal_functor_ϵ_inv (smF : strong_monoidal_functor) :
lax_monoidal_functor_functor smF I_C --> I_D
:= inv_from_z_iso (strong_monoidal_functor_ϵ smF).
Definition strong_monoidal_functor_μ (smF : strong_monoidal_functor) :
nat_z_iso (monoidal_functor_map_dom smF) (monoidal_functor_map_codom smF)
:= make_nat_z_iso _ _
(lax_monoidal_functor_μ smF)
(strong_monoidal_functor_μ_is_nat_z_iso smF).
Definition strong_monoidal_functor_μ_inv (smF : strong_monoidal_functor)
: monoidal_functor_map_codom smF ⟹ monoidal_functor_map_dom smF
:= nat_z_iso_to_trans_inv (strong_monoidal_functor_μ smF).
End Monoidal_Functor.
Arguments lax_monoidal_functor_ϵ {_ _} _ .
Arguments lax_monoidal_functor_μ {_ _} _ .
Arguments lax_monoidal_functor_assoc {_ _} _ .
Arguments lax_monoidal_functor_unital {_ _} _ .
Arguments strong_monoidal_functor_ϵ_is_z_iso {_ _} _ .
Arguments strong_monoidal_functor_μ_is_nat_z_iso {_ _} _ .
Arguments strong_monoidal_functor_ϵ {_ _} _ .
Arguments strong_monoidal_functor_ϵ_inv {_ _} _ .
Arguments strong_monoidal_functor_μ {_ _} _ .
Arguments strong_monoidal_functor_μ_inv {_ _} _ .
Section swapped_tensor.
Context {Mon Mon' : monoidal_cat}.
Local Definition tensor := monoidal_cat_tensor Mon.
Local Definition tensor' := monoidal_cat_tensor Mon'.
Lemma swapping_of_lax_monoidal_functor_assoc (lmF: lax_monoidal_functor Mon Mon'):
monoidal_functor_associativity (swapping_of_monoidal_cat Mon) (swapping_of_monoidal_cat Mon') lmF
(pre_whisker binswap_pair_functor (lax_monoidal_functor_μ lmF)).
Show proof.
induction lmF as [F [ϵ [μ [Hass Hunit]]]].
red. intros x y z.
set (Hass_inst := Hass z y x).
apply pathsinv0. rewrite <- assoc.
cbn.
set (f := nat_z_iso_pointwise_z_iso (monoidal_cat_associator Mon') ((F z, F y), F x)).
apply (z_iso_inv_on_right _ _ _ f).
transparent assert (is : (is_z_isomorphism (# F (monoidal_cat_associator Mon ((z, y), x))))).
{ apply functor_on_is_z_isomorphism.
apply monoidal_cat_associator.
}
set (Hass_inst' := z_iso_inv_on_left _ _ _ _ (_,, is) _ (! Hass_inst)).
etrans.
{ exact Hass_inst'. }
clear Hass_inst Hass_inst'.
do 2 rewrite assoc.
apply cancel_precomposition.
apply idpath.
red. intros x y z.
set (Hass_inst := Hass z y x).
apply pathsinv0. rewrite <- assoc.
cbn.
set (f := nat_z_iso_pointwise_z_iso (monoidal_cat_associator Mon') ((F z, F y), F x)).
apply (z_iso_inv_on_right _ _ _ f).
transparent assert (is : (is_z_isomorphism (# F (monoidal_cat_associator Mon ((z, y), x))))).
{ apply functor_on_is_z_isomorphism.
apply monoidal_cat_associator.
}
set (Hass_inst' := z_iso_inv_on_left _ _ _ _ (_,, is) _ (! Hass_inst)).
etrans.
{ exact Hass_inst'. }
clear Hass_inst Hass_inst'.
do 2 rewrite assoc.
apply cancel_precomposition.
apply idpath.
Definition swapping_of_lax_monoidal_functor: lax_monoidal_functor Mon Mon' ->
lax_monoidal_functor (swapping_of_monoidal_cat Mon)
(swapping_of_monoidal_cat Mon').
Show proof.
intro lmF.
induction lmF as [F [ϵ [μ [Hass Hunit]]]].
use make_lax_monoidal_functor.
- exact F.
- exact ϵ.
- exact (pre_whisker binswap_pair_functor μ).
- apply (swapping_of_lax_monoidal_functor_assoc (F,, (ϵ,, (μ,, (Hass,, Hunit))))).
- abstract ( red; intro x; induction (Hunit x) as [Hunit1 Hunit2]; split; assumption ).
induction lmF as [F [ϵ [μ [Hass Hunit]]]].
use make_lax_monoidal_functor.
- exact F.
- exact ϵ.
- exact (pre_whisker binswap_pair_functor μ).
- apply (swapping_of_lax_monoidal_functor_assoc (F,, (ϵ,, (μ,, (Hass,, Hunit))))).
- abstract ( red; intro x; induction (Hunit x) as [Hunit1 Hunit2]; split; assumption ).
Definition swapping_of_strong_monoidal_functor: strong_monoidal_functor Mon Mon' ->
strong_monoidal_functor (swapping_of_monoidal_cat Mon)
(swapping_of_monoidal_cat Mon').
Show proof.
intro smF.
induction smF as [lmF [Hϵ Hμ]].
apply (tpair _ (swapping_of_lax_monoidal_functor lmF)).
split.
- exact Hϵ.
- exact (pre_whisker_on_nat_z_iso binswap_pair_functor (lax_monoidal_functor_μ lmF) Hμ).
induction smF as [lmF [Hϵ Hμ]].
apply (tpair _ (swapping_of_lax_monoidal_functor lmF)).
split.
- exact Hϵ.
- exact (pre_whisker_on_nat_z_iso binswap_pair_functor (lax_monoidal_functor_μ lmF) Hμ).
Lemma swapping_of_strong_monoidal_functor_on_objects (smF: strong_monoidal_functor Mon Mon')(a: Mon): swapping_of_strong_monoidal_functor smF a = smF a.
Show proof.
End swapped_tensor.