Library UniMath.CategoryTheory.OppositeCategory.Core
Require Import UniMath.Foundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.opp_precat.
Definition opp_cat (C : category)
: category.
Show proof.
Notation " C ^opp" := (opp_cat C) (at level 31).
Definition functor_op {C D : category} (F : functor C D)
: functor (opp_cat C) (opp_cat D)
:= functor_opp F.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.opp_precat.
Definition opp_cat (C : category)
: category.
Show proof.
Notation " C ^opp" := (opp_cat C) (at level 31).
Definition functor_op {C D : category} (F : functor C D)
: functor (opp_cat C) (opp_cat D)
:= functor_opp F.