Library UniMath.CategoryTheory.categories.CategoryOfSetCategories
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Setcategories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Local Open Scope cat.
Definition precat_ob_mor_of_setcategory
: precategory_ob_mor.
Show proof.
Definition precat_data_of_setcategory
: precategory_data.
Show proof.
Definition is_precategory_of_setcategory
: is_precategory precat_data_of_setcategory.
Show proof.
Definition precat_of_setcategory
: precategory.
Show proof.
Definition has_homsets_cat_of_setcategory
: has_homsets precat_of_setcategory.
Show proof.
Definition cat_of_setcategory
: category.
Show proof.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Setcategories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Local Open Scope cat.
Definition precat_ob_mor_of_setcategory
: precategory_ob_mor.
Show proof.
Definition precat_data_of_setcategory
: precategory_data.
Show proof.
use make_precategory_data.
- exact precat_ob_mor_of_setcategory.
- exact (λ C, functor_identity _).
- exact (λ C₁ C₂ C₃ F G, F ∙ G).
- exact precat_ob_mor_of_setcategory.
- exact (λ C, functor_identity _).
- exact (λ C₁ C₂ C₃ F G, F ∙ G).
Definition is_precategory_of_setcategory
: is_precategory precat_data_of_setcategory.
Show proof.
use make_is_precategory_one_assoc.
- intros C₁ C₂ F.
use functor_eq.
{
apply homset_property.
}
use functor_data_eq ; cbn.
+ intro ; apply idpath.
+ intros x y f ; cbn.
apply idpath.
- intros C₁ C₂ F.
use functor_eq.
{
apply homset_property.
}
use functor_data_eq ; cbn.
+ intro ; apply idpath.
+ intros x y f ; cbn.
apply idpath.
- intros C₁ C₂ C₃ C₄ F G H.
use functor_eq.
{
apply homset_property.
}
use functor_data_eq ; cbn.
+ intro ; apply idpath.
+ intros x y f ; cbn.
apply idpath.
- intros C₁ C₂ F.
use functor_eq.
{
apply homset_property.
}
use functor_data_eq ; cbn.
+ intro ; apply idpath.
+ intros x y f ; cbn.
apply idpath.
- intros C₁ C₂ F.
use functor_eq.
{
apply homset_property.
}
use functor_data_eq ; cbn.
+ intro ; apply idpath.
+ intros x y f ; cbn.
apply idpath.
- intros C₁ C₂ C₃ C₄ F G H.
use functor_eq.
{
apply homset_property.
}
use functor_data_eq ; cbn.
+ intro ; apply idpath.
+ intros x y f ; cbn.
apply idpath.
Definition precat_of_setcategory
: precategory.
Show proof.
Definition has_homsets_cat_of_setcategory
: has_homsets precat_of_setcategory.
Show proof.
Definition cat_of_setcategory
: category.
Show proof.