Library UniMath.MoreFoundations.Interval
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.NullHomotopies.
Require Import UniMath.MoreFoundations.Notations.
Definition interval := ∥ bool ∥.
Definition left := hinhpr true : interval.
Definition right := hinhpr false : interval.
Definition interval_path : left = right := squash_path true false.
Definition interval_map {Y} {y y':Y} : y = y' -> interval -> Y.
Show proof.
intros e. set (f := λ t:bool, if t then y else y').
refine (cone_squash_map f (f false) _).
intros v. induction v.
{ exact e. }
{ reflexivity. }
refine (cone_squash_map f (f false) _).
intros v. induction v.
{ exact e. }
{ reflexivity. }
Goal ∏ Y {y y':Y} (e : y = y'), interval_map e left = y.
reflexivity.
Qed.
Goal ∏ Y {y y':Y} (e : y = y'), interval_map e right = y'.
reflexivity.
Qed.