Library UniMath.Bicategories.ComprehensionCat.Biequivalence.Biequiv
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.EquivToAdjequiv.
Require Import UniMath.Bicategories.Morphisms.Adjunctions.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Unit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Local Open Scope cat.
Definition finlim_dfl_comp_cat_biequivalence_unit_counit
: is_biequivalence_unit_counit
finlim_to_dfl_comp_cat_psfunctor
dfl_comp_cat_to_finlim_psfunctor
:= finlim_dfl_comp_cat_unit
,,
finlim_dfl_comp_cat_counit_inv.
Definition finlim_dfl_comp_cat_biequivalence_adjoints
: is_biequivalence_adjoints finlim_dfl_comp_cat_biequivalence_unit_counit.
Show proof.
Definition is_biequivalence_finlim_to_dfl_comp_cat_psfunctor
: is_biequivalence finlim_to_dfl_comp_cat_psfunctor
:= dfl_comp_cat_to_finlim_psfunctor
,,
finlim_dfl_comp_cat_biequivalence_unit_counit
,,
finlim_dfl_comp_cat_biequivalence_adjoints.
Definition finlim_biequiv_dfl_comp_cat_psfunctor
: biequivalence
bicat_of_univ_cat_with_finlim
bicat_of_dfl_full_comp_cat
:= finlim_to_dfl_comp_cat_psfunctor
,,
is_biequivalence_finlim_to_dfl_comp_cat_psfunctor.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.EquivToAdjequiv.
Require Import UniMath.Bicategories.Morphisms.Adjunctions.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Unit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Local Open Scope cat.
Definition finlim_dfl_comp_cat_biequivalence_unit_counit
: is_biequivalence_unit_counit
finlim_to_dfl_comp_cat_psfunctor
dfl_comp_cat_to_finlim_psfunctor
:= finlim_dfl_comp_cat_unit
,,
finlim_dfl_comp_cat_counit_inv.
Definition finlim_dfl_comp_cat_biequivalence_adjoints
: is_biequivalence_adjoints finlim_dfl_comp_cat_biequivalence_unit_counit.
Show proof.
split.
- exact finlim_dfl_comp_cat_unit_left_adjoint_equivalence.
- apply inv_left_adjoint_equivalence.
- exact finlim_dfl_comp_cat_unit_left_adjoint_equivalence.
- apply inv_left_adjoint_equivalence.
Definition is_biequivalence_finlim_to_dfl_comp_cat_psfunctor
: is_biequivalence finlim_to_dfl_comp_cat_psfunctor
:= dfl_comp_cat_to_finlim_psfunctor
,,
finlim_dfl_comp_cat_biequivalence_unit_counit
,,
finlim_dfl_comp_cat_biequivalence_adjoints.
Definition finlim_biequiv_dfl_comp_cat_psfunctor
: biequivalence
bicat_of_univ_cat_with_finlim
bicat_of_dfl_full_comp_cat
:= finlim_to_dfl_comp_cat_psfunctor
,,
is_biequivalence_finlim_to_dfl_comp_cat_psfunctor.