Library UniMath.Bicategories.ComprehensionCat.FinLimToCompCatLemmas
- Coercion. if we have a morphism `A <: B` over the identity, then every term of type `A` gives rise to a term of type `B`.
- Substitution of terms. If we have a term `t : tm Δ A` and a substitution `s : Γ --> Δ`, then we also have a term `t [ s ]tm : tm Γ (A [ s ])`.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiber.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.FiberCod.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.Equalizers.
Require Import UniMath.CategoryTheory.Limits.Pullbacks.
Require Import UniMath.CategoryTheory.Monics.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.CompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.HPropMono.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Local Open Scope cat.
Local Open Scope comp_cat.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiber.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.FiberCod.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.Equalizers.
Require Import UniMath.CategoryTheory.Limits.Pullbacks.
Require Import UniMath.CategoryTheory.Monics.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.CompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.HPropMono.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Local Open Scope cat.
Local Open Scope comp_cat.
Section FinLimCompCatCalculation.
Context {C : univ_cat_with_finlim}.
Proposition finlim_to_comp_cat_coerce_eq
{Γ : finlim_to_comp_cat C}
{A B : ty Γ}
(f : A <: B)
(t : tm Γ A)
: (t ↑ f : _ --> _)
=
t · dom_mor f.
Show proof.
Proposition finlim_to_comp_cat_eq_subst_ty_pullback_pr1
{Γ Δ : finlim_to_comp_cat C}
(A : ty Δ)
{s₁ s₂ : Γ --> Δ}
(p : s₁ = s₂)
: dom_mor (eq_subst_ty A p) · PullbackPr1 _
=
PullbackPr1 _.
Show proof.
Proposition finlim_to_comp_cat_eq_subst_ty_pullback_pr2
{Γ Δ : finlim_to_comp_cat C}
(A : ty Δ)
{s₁ s₂ : Γ --> Δ}
(p : s₁ = s₂)
: dom_mor (eq_subst_ty A p) · PullbackPr2 _
=
PullbackPr2 _.
Show proof.
Proposition finlim_to_comp_cat_comp_subst_ty_pullback_pr1
{Γ₁ Γ₂ Γ₃ : finlim_to_comp_cat C}
(A : ty Γ₃)
{s₁ : Γ₁ --> Γ₂}
(s₂ : Γ₂ --> Γ₃)
: dom_mor (comp_subst_ty s₁ s₂ A) · PullbackPr1 _
=
PullbackPr1 _ · PullbackPr1 _.
Show proof.
Proposition finlim_to_comp_cat_comp_subst_ty_pullback_pr2
{Γ₁ Γ₂ Γ₃ : finlim_to_comp_cat C}
(A : ty Γ₃)
{s₁ : Γ₁ --> Γ₂}
(s₂ : Γ₂ --> Γ₃)
: dom_mor (comp_subst_ty s₁ s₂ A) · PullbackPr2 _
=
PullbackPr2 _.
Show proof.
Proposition finlim_to_comp_cat_id_subst_ty_pullback_pr1
{Γ : finlim_to_comp_cat C}
(A : ty Γ)
: dom_mor (id_subst_ty A) · PullbackPr1 _
=
identity _.
Show proof.
Proposition finlim_to_comp_cat_id_subst_ty_pullback_pr2
{Γ : finlim_to_comp_cat C}
(A : ty Γ)
: dom_mor (id_subst_ty A) · PullbackPr2 _
=
cod_mor A.
Show proof.
Proposition finlim_to_comp_cat_coerce_subst_ty_pullback_pr1
{Γ₁ Γ₂ : finlim_to_comp_cat C}
{A B : ty Γ₂}
(s : Γ₁ --> Γ₂)
(f : A <: B)
: dom_mor (coerce_subst_ty s f) · PullbackPr1 _
=
PullbackPr1 _ · dom_mor f.
Show proof.
Proposition finlim_to_comp_cat_coerce_subst_ty_pullback_pr2
{Γ₁ Γ₂ : finlim_to_comp_cat C}
{A B : ty Γ₂}
(s : Γ₁ --> Γ₂)
(f : A <: B)
: dom_mor (coerce_subst_ty s f) · PullbackPr2 _
=
PullbackPr2 _.
Show proof.
Proposition finlim_to_comp_cat_subst_tm_pullback_pr1
{Γ Δ : finlim_to_comp_cat C}
(s : Γ --> Δ)
{A : ty Δ}
(t : tm Δ A)
: t [[ s ]]tm · PullbackPr1 _
=
s · t.
Show proof.
Proposition finlim_to_comp_cat_subst_ty_coe_pr1
{Γ Δ Δ' : finlim_to_comp_cat C}
(s : Γ --> Δ)
{A : ty Δ}
{B : ty Δ'}
(f : z_iso Δ Δ')
(ff : z_iso_disp f A B)
: dom_mor (subst_ty_coe s f ff) · PullbackPr1 _
=
PullbackPr1 _ · pr11 ff.
Show proof.
Proposition finlim_to_comp_cat_subst_ty_coe_pr2
{Γ Δ Δ' : finlim_to_comp_cat C}
(s : Γ --> Δ)
{A : ty Δ}
{B : ty Δ'}
(f : z_iso Δ Δ')
(ff : z_iso_disp f A B)
: dom_mor (subst_ty_coe s f ff) · PullbackPr2 _
=
PullbackPr2 _.
Show proof.
Proposition finlim_to_comp_cat_comp_mor
{Γ : finlim_to_comp_cat C}
{A B : ty Γ}
(s : A -->[ identity _ ] B)
: comp_cat_comp_mor s = dom_mor s.
Show proof.
Definition univ_cat_with_finlim_comprehension_functor
{Γ Δ : C}
{s : Γ --> Δ}
{A : disp_codomain C Γ}
{B : disp_codomain C Δ}
(f : A -->[ s ] B)
: comprehension_functor_mor (finlim_comprehension C) f
=
pr1 f.
Show proof.
Proposition finlim_comp_cat_comp_mor_over
{Γ Δ : finlim_to_comp_cat C}
(s : Γ --> Δ)
{A : ty Γ}
{B : ty Δ}
(f : A <: B [[ s ]])
: comp_cat_comp_mor_over s f
=
dom_mor f · PullbackPr1 _.
Show proof.
Proposition finlim_comp_cat_comp_mor_over_sub
{Γ : finlim_to_comp_cat C}
{A₁ A₂ : ty Γ}
(f : A₁ <: A₂)
{B₁ : ty (Γ & A₁)}
{B₂ : ty (Γ & A₂)}
(g : B₁ <: B₂ [[ comp_cat_comp_mor (C := finlim_to_comp_cat C) f ]])
: comp_cat_comp_mor_over_sub f g
=
dom_mor g · PullbackPr1 _.
Show proof.
Proposition finlim_comp_cat_extend_over
{Γ Δ : finlim_to_comp_cat C}
(s : Γ --> Δ)
(A : ty Δ)
: comp_cat_extend_over A s = PullbackPr1 _.
Show proof.
Definition finlim_comp_cat_monic_to_hprop_ty
{Γ A : finlim_to_dfl_comp_cat C}
(m : Monic _ A Γ)
: ty Γ
:= A ,, pr1 m.
Definition finlim_comp_cat_monic_to_is_hprop_ty
{Γ A : finlim_to_dfl_comp_cat C}
(m : Monic _ A Γ)
: is_hprop_ty (finlim_comp_cat_monic_to_hprop_ty m).
Show proof.
Proposition dfl_ext_identity_eq_arrow
{Γ : finlim_to_dfl_comp_cat C}
{A : ty Γ}
(t₁ t₂ : tm Γ A)
: π (dfl_ext_identity_type t₁ t₂)
=
dom_mor (EqualizerArrow (dfl_ext_identity t₁ t₂)).
Show proof.
End FinLimCompCatCalculation.
Context {C : univ_cat_with_finlim}.
Proposition finlim_to_comp_cat_coerce_eq
{Γ : finlim_to_comp_cat C}
{A B : ty Γ}
(f : A <: B)
(t : tm Γ A)
: (t ↑ f : _ --> _)
=
t · dom_mor f.
Show proof.
Proposition finlim_to_comp_cat_eq_subst_ty_pullback_pr1
{Γ Δ : finlim_to_comp_cat C}
(A : ty Δ)
{s₁ s₂ : Γ --> Δ}
(p : s₁ = s₂)
: dom_mor (eq_subst_ty A p) · PullbackPr1 _
=
PullbackPr1 _.
Show proof.
Proposition finlim_to_comp_cat_eq_subst_ty_pullback_pr2
{Γ Δ : finlim_to_comp_cat C}
(A : ty Δ)
{s₁ s₂ : Γ --> Δ}
(p : s₁ = s₂)
: dom_mor (eq_subst_ty A p) · PullbackPr2 _
=
PullbackPr2 _.
Show proof.
Proposition finlim_to_comp_cat_comp_subst_ty_pullback_pr1
{Γ₁ Γ₂ Γ₃ : finlim_to_comp_cat C}
(A : ty Γ₃)
{s₁ : Γ₁ --> Γ₂}
(s₂ : Γ₂ --> Γ₃)
: dom_mor (comp_subst_ty s₁ s₂ A) · PullbackPr1 _
=
PullbackPr1 _ · PullbackPr1 _.
Show proof.
etrans.
{
apply (PullbackArrow_PullbackPr1 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply transportb_cod_disp.
{
apply (PullbackArrow_PullbackPr1 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply transportb_cod_disp.
Proposition finlim_to_comp_cat_comp_subst_ty_pullback_pr2
{Γ₁ Γ₂ Γ₃ : finlim_to_comp_cat C}
(A : ty Γ₃)
{s₁ : Γ₁ --> Γ₂}
(s₂ : Γ₂ --> Γ₃)
: dom_mor (comp_subst_ty s₁ s₂ A) · PullbackPr2 _
=
PullbackPr2 _.
Show proof.
etrans.
{
apply (PullbackArrow_PullbackPr2 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply id_right.
{
apply (PullbackArrow_PullbackPr2 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply id_right.
Proposition finlim_to_comp_cat_id_subst_ty_pullback_pr1
{Γ : finlim_to_comp_cat C}
(A : ty Γ)
: dom_mor (id_subst_ty A) · PullbackPr1 _
=
identity _.
Show proof.
etrans.
{
apply (PullbackArrow_PullbackPr1 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply transportb_cod_disp.
{
apply (PullbackArrow_PullbackPr1 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply transportb_cod_disp.
Proposition finlim_to_comp_cat_id_subst_ty_pullback_pr2
{Γ : finlim_to_comp_cat C}
(A : ty Γ)
: dom_mor (id_subst_ty A) · PullbackPr2 _
=
cod_mor A.
Show proof.
etrans.
{
apply (PullbackArrow_PullbackPr2 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply id_right.
{
apply (PullbackArrow_PullbackPr2 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply id_right.
Proposition finlim_to_comp_cat_coerce_subst_ty_pullback_pr1
{Γ₁ Γ₂ : finlim_to_comp_cat C}
{A B : ty Γ₂}
(s : Γ₁ --> Γ₂)
(f : A <: B)
: dom_mor (coerce_subst_ty s f) · PullbackPr1 _
=
PullbackPr1 _ · dom_mor f.
Show proof.
etrans.
{
apply (PullbackArrow_PullbackPr1 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply transportf_cod_disp.
{
apply (PullbackArrow_PullbackPr1 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply transportf_cod_disp.
Proposition finlim_to_comp_cat_coerce_subst_ty_pullback_pr2
{Γ₁ Γ₂ : finlim_to_comp_cat C}
{A B : ty Γ₂}
(s : Γ₁ --> Γ₂)
(f : A <: B)
: dom_mor (coerce_subst_ty s f) · PullbackPr2 _
=
PullbackPr2 _.
Show proof.
etrans.
{
apply (PullbackArrow_PullbackPr2 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply id_right.
{
apply (PullbackArrow_PullbackPr2 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply id_right.
Proposition finlim_to_comp_cat_subst_tm_pullback_pr1
{Γ Δ : finlim_to_comp_cat C}
(s : Γ --> Δ)
{A : ty Δ}
(t : tm Δ A)
: t [[ s ]]tm · PullbackPr1 _
=
s · t.
Show proof.
Proposition finlim_to_comp_cat_subst_ty_coe_pr1
{Γ Δ Δ' : finlim_to_comp_cat C}
(s : Γ --> Δ)
{A : ty Δ}
{B : ty Δ'}
(f : z_iso Δ Δ')
(ff : z_iso_disp f A B)
: dom_mor (subst_ty_coe s f ff) · PullbackPr1 _
=
PullbackPr1 _ · pr11 ff.
Show proof.
etrans.
{
apply (PullbackArrow_PullbackPr1 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply transportf_cod_disp.
{
apply (PullbackArrow_PullbackPr1 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply transportf_cod_disp.
Proposition finlim_to_comp_cat_subst_ty_coe_pr2
{Γ Δ Δ' : finlim_to_comp_cat C}
(s : Γ --> Δ)
{A : ty Δ}
{B : ty Δ'}
(f : z_iso Δ Δ')
(ff : z_iso_disp f A B)
: dom_mor (subst_ty_coe s f ff) · PullbackPr2 _
=
PullbackPr2 _.
Show proof.
etrans.
{
apply (PullbackArrow_PullbackPr2 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply id_right.
{
apply (PullbackArrow_PullbackPr2 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply id_right.
Proposition finlim_to_comp_cat_comp_mor
{Γ : finlim_to_comp_cat C}
{A B : ty Γ}
(s : A -->[ identity _ ] B)
: comp_cat_comp_mor s = dom_mor s.
Show proof.
Definition univ_cat_with_finlim_comprehension_functor
{Γ Δ : C}
{s : Γ --> Δ}
{A : disp_codomain C Γ}
{B : disp_codomain C Δ}
(f : A -->[ s ] B)
: comprehension_functor_mor (finlim_comprehension C) f
=
pr1 f.
Show proof.
Proposition finlim_comp_cat_comp_mor_over
{Γ Δ : finlim_to_comp_cat C}
(s : Γ --> Δ)
{A : ty Γ}
{B : ty Δ}
(f : A <: B [[ s ]])
: comp_cat_comp_mor_over s f
=
dom_mor f · PullbackPr1 _.
Show proof.
Proposition finlim_comp_cat_comp_mor_over_sub
{Γ : finlim_to_comp_cat C}
{A₁ A₂ : ty Γ}
(f : A₁ <: A₂)
{B₁ : ty (Γ & A₁)}
{B₂ : ty (Γ & A₂)}
(g : B₁ <: B₂ [[ comp_cat_comp_mor (C := finlim_to_comp_cat C) f ]])
: comp_cat_comp_mor_over_sub f g
=
dom_mor g · PullbackPr1 _.
Show proof.
Proposition finlim_comp_cat_extend_over
{Γ Δ : finlim_to_comp_cat C}
(s : Γ --> Δ)
(A : ty Δ)
: comp_cat_extend_over A s = PullbackPr1 _.
Show proof.
Definition finlim_comp_cat_monic_to_hprop_ty
{Γ A : finlim_to_dfl_comp_cat C}
(m : Monic _ A Γ)
: ty Γ
:= A ,, pr1 m.
Definition finlim_comp_cat_monic_to_is_hprop_ty
{Γ A : finlim_to_dfl_comp_cat C}
(m : Monic _ A Γ)
: is_hprop_ty (finlim_comp_cat_monic_to_hprop_ty m).
Show proof.
Proposition dfl_ext_identity_eq_arrow
{Γ : finlim_to_dfl_comp_cat C}
{A : ty Γ}
(t₁ t₂ : tm Γ A)
: π (dfl_ext_identity_type t₁ t₂)
=
dom_mor (EqualizerArrow (dfl_ext_identity t₁ t₂)).
Show proof.
End FinLimCompCatCalculation.
Section FinLimCompCatFunctorCalculation.
Context {C₁ C₂ : univ_cat_with_finlim}
(F : functor_finlim C₁ C₂).
Proposition finlim_to_comp_cat_functor_subst_ty_coe_pr1
{Γ₁ Γ₂ : finlim_to_comp_cat C₁}
(s : Γ₁ --> Γ₂)
(A : ty Γ₂)
: dom_mor (comp_cat_functor_subst_ty_coe (finlim_to_comp_cat_functor F) s A)
· PullbackPr1 _
=
#F (PullbackPr1 _).
Show proof.
Proposition finlim_to_comp_cat_functor_subst_ty_coe_pr2
{Γ₁ Γ₂ : finlim_to_comp_cat C₁}
(s : Γ₁ --> Γ₂)
(A : ty Γ₂)
: dom_mor (comp_cat_functor_subst_ty_coe (finlim_to_comp_cat_functor F) s A)
· PullbackPr2 _
=
#F (PullbackPr2 _).
Show proof.
Proposition finlim_to_comp_cat_functor_coerce
{Γ : finlim_to_comp_cat C₁}
{A B : ty Γ}
(f : A <: B)
: dom_mor (comp_cat_functor_coerce (finlim_to_comp_cat_functor F) f)
=
#F (dom_mor f).
Show proof.
Proposition finlim_to_comprehension_nat_trans_mor
{Γ : finlim_to_comp_cat C₁}
(A : ty Γ)
: comprehension_nat_trans_mor
(comp_cat_functor_comprehension
(finlim_to_comp_cat_functor F))
A
=
identity _.
Show proof.
End FinLimCompCatFunctorCalculation.
Context {C₁ C₂ : univ_cat_with_finlim}
(F : functor_finlim C₁ C₂).
Proposition finlim_to_comp_cat_functor_subst_ty_coe_pr1
{Γ₁ Γ₂ : finlim_to_comp_cat C₁}
(s : Γ₁ --> Γ₂)
(A : ty Γ₂)
: dom_mor (comp_cat_functor_subst_ty_coe (finlim_to_comp_cat_functor F) s A)
· PullbackPr1 _
=
#F (PullbackPr1 _).
Show proof.
etrans.
{
apply (PullbackArrow_PullbackPr1 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply transportf_cod_disp.
{
apply (PullbackArrow_PullbackPr1 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply transportf_cod_disp.
Proposition finlim_to_comp_cat_functor_subst_ty_coe_pr2
{Γ₁ Γ₂ : finlim_to_comp_cat C₁}
(s : Γ₁ --> Γ₂)
(A : ty Γ₂)
: dom_mor (comp_cat_functor_subst_ty_coe (finlim_to_comp_cat_functor F) s A)
· PullbackPr2 _
=
#F (PullbackPr2 _).
Show proof.
etrans.
{
apply (PullbackArrow_PullbackPr2 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply id_right.
{
apply (PullbackArrow_PullbackPr2 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply id_right.
Proposition finlim_to_comp_cat_functor_coerce
{Γ : finlim_to_comp_cat C₁}
{A B : ty Γ}
(f : A <: B)
: dom_mor (comp_cat_functor_coerce (finlim_to_comp_cat_functor F) f)
=
#F (dom_mor f).
Show proof.
Proposition finlim_to_comprehension_nat_trans_mor
{Γ : finlim_to_comp_cat C₁}
(A : ty Γ)
: comprehension_nat_trans_mor
(comp_cat_functor_comprehension
(finlim_to_comp_cat_functor F))
A
=
identity _.
Show proof.
End FinLimCompCatFunctorCalculation.
Section FinLimCompCatNatTransCalculation.
Context {C₁ C₂ : univ_cat_with_finlim}
{F G : functor_finlim C₁ C₂}
(τ : nat_trans_finlim F G)
{Γ : finlim_to_dfl_comp_cat C₁}
(A : ty Γ).
Proposition finlim_to_comp_cat_fib_nat_trans_pr1
: dom_mor (comp_cat_type_fib_nat_trans (finlim_to_dfl_comp_cat_nat_trans τ) A)
· PullbackPr1 _
=
τ (cod_dom A).
Show proof.
Proposition finlim_to_comp_cat_fib_nat_trans_pr2
: dom_mor (comp_cat_type_fib_nat_trans (finlim_to_dfl_comp_cat_nat_trans τ) A)
· PullbackPr2 _
=
#F (cod_mor A).
Show proof.
Context {C₁ C₂ : univ_cat_with_finlim}
{F G : functor_finlim C₁ C₂}
(τ : nat_trans_finlim F G)
{Γ : finlim_to_dfl_comp_cat C₁}
(A : ty Γ).
Proposition finlim_to_comp_cat_fib_nat_trans_pr1
: dom_mor (comp_cat_type_fib_nat_trans (finlim_to_dfl_comp_cat_nat_trans τ) A)
· PullbackPr1 _
=
τ (cod_dom A).
Show proof.
etrans.
{
apply (PullbackArrow_PullbackPr1 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply transportf_cod_disp.
{
apply (PullbackArrow_PullbackPr1 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply transportf_cod_disp.
Proposition finlim_to_comp_cat_fib_nat_trans_pr2
: dom_mor (comp_cat_type_fib_nat_trans (finlim_to_dfl_comp_cat_nat_trans τ) A)
· PullbackPr2 _
=
#F (cod_mor A).
Show proof.
etrans.
{
apply (PullbackArrow_PullbackPr2 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply id_right.
End FinLimCompCatNatTransCalculation.{
apply (PullbackArrow_PullbackPr2 (pullbacks_univ_cat_with_finlim _ _ _ _ _ _)).
}
apply id_right.