Library UniMath.Bicategories.ComprehensionCat.TypeFormers.EqualizerTypes

1. The displayed bicategory of equalizer types

Definition disp_bicat_of_equalizer_type
  : disp_bicat bicat_cat_with_terminal_cleaving.
Show proof.
  use disp_subbicat.
  - exact (λ (C : cat_with_terminal_cleaving),
           fiberwise_equalizers (cleaving_of_types C)).
  - exact (λ (C₁ C₂ : cat_with_terminal_cleaving)
             (T₁ : fiberwise_equalizers (cleaving_of_types C₁))
             (T₂ : fiberwise_equalizers (cleaving_of_types C₂))
             (F : functor_with_terminal_cleaving C₁ C₂),
            (x : C₁),
           preserves_equalizer
             (fiber_functor (comp_cat_type_functor F) x)).
  - abstract
      (intros C EC x y₁ y₂ e f g h p Fp H ;
       exact H).
  - intros C₁ C₂ C₃ EC₁ EC₂ EC₃ F G HF HG x y₁ y₂ e f g h p Fp H.
    use (isEqualizer_eq
           _ _ _ _ _
           (composition_preserves_equalizer (HF x) (HG _) _ _ _ _ _ _ _ _ H)).
    + abstract
        (cbn ;
         rewrite !mor_disp_transportf_prewhisker ;
         rewrite !mor_disp_transportf_postwhisker ;
         rewrite !disp_functor_transportf ;
         rewrite !mor_disp_transportf_prewhisker ;
         rewrite !mor_disp_transportf_postwhisker ;
         rewrite <- !disp_functor_comp_var ;
         rewrite !disp_functor_transportf ;
         rewrite !transport_f_f ;
         pose (maponpaths (transportb _ (id_right _)) p) as p' ;
         cbn in p' ;
         rewrite !transportbfinv in p' ;
         rewrite p' ;
         apply maponpaths_2 ;
         apply homset_property).
    + abstract
        (cbn ;
         rewrite !disp_functor_transportf ;
         rewrite !transport_f_f ;
         apply maponpaths_2 ;
         apply homset_property).
    + abstract
        (cbn ;
         rewrite !disp_functor_transportf ;
         rewrite !transport_f_f ;
         apply maponpaths_2 ;
         apply homset_property).
    + abstract
        (cbn ;
         rewrite !disp_functor_transportf ;
         rewrite !transport_f_f ;
         apply maponpaths_2 ;
         apply homset_property).

2. The univalence of this displayed bicategory

3. Equalizer types for comprehension categories

Definition disp_bicat_of_equalizer_type_comp_cat
  : disp_bicat bicat_comp_cat
  := lift_disp_bicat _ disp_bicat_of_equalizer_type.

Definition univalent_2_1_disp_bicat_of_equalizer_type_comp_cat
  : disp_univalent_2_1 disp_bicat_of_equalizer_type_comp_cat.
Show proof.

Definition univalent_2_0_disp_bicat_of_equalizer_type_comp_cat
  : disp_univalent_2_0 disp_bicat_of_equalizer_type_comp_cat.
Show proof.

Definition univalent_2_disp_bicat_of_equalizer_type_comp_cat
  : disp_univalent_2 disp_bicat_of_equalizer_type_comp_cat.
Show proof.

Definition disp_2cells_isaprop_disp_bicat_of_equalizer_type_comp_cat
  : disp_2cells_isaprop disp_bicat_of_equalizer_type_comp_cat.
Show proof.

Definition disp_locally_groupoid_disp_bicat_of_equalizer_type_comp_cat
  : disp_locally_groupoid disp_bicat_of_equalizer_type_comp_cat.
Show proof.

4. Equalizer types for full comprehension categories

Definition disp_bicat_of_equalizer_type_full_comp_cat
  : disp_bicat bicat_full_comp_cat
  := lift_disp_bicat _ disp_bicat_of_equalizer_type_comp_cat.

Definition univalent_2_1_disp_bicat_of_equalizer_type_full_comp_cat
  : disp_univalent_2_1 disp_bicat_of_equalizer_type_full_comp_cat.
Show proof.

Definition univalent_2_0_disp_bicat_of_equalizer_type_full_comp_cat
  : disp_univalent_2_0 disp_bicat_of_equalizer_type_full_comp_cat.
Show proof.

Definition univalent_2_disp_bicat_of_equalizer_type_full_comp_cat
  : disp_univalent_2 disp_bicat_of_equalizer_type_full_comp_cat.
Show proof.

Definition disp_2cells_isaprop_disp_bicat_of_equalizer_type_full_comp_cat
  : disp_2cells_isaprop disp_bicat_of_equalizer_type_full_comp_cat.
Show proof.

Definition disp_locally_groupoid_disp_bicat_of_equalizer_type_full_comp_cat
  : disp_locally_groupoid disp_bicat_of_equalizer_type_full_comp_cat.
Show proof.

5. Adjoint equivalences