Library UniMath.Bicategories.ComprehensionCat.TypeFormers.ProductTypes

1. The displayed bicategory of product types

Definition disp_bicat_of_prod_type
  : disp_bicat bicat_cat_with_terminal_cleaving.
Show proof.
  use disp_subbicat.
  - exact (λ (C : cat_with_terminal_cleaving),
           fiberwise_binproducts (cleaving_of_types C)).
  - exact (λ (C₁ C₂ : cat_with_terminal_cleaving)
             (T₁ : fiberwise_binproducts (cleaving_of_types C₁))
             (T₂ : fiberwise_binproducts (cleaving_of_types C₂))
             (F : functor_with_terminal_cleaving C₁ C₂),
            (x : C₁),
           preserves_binproduct
             (fiber_functor (comp_cat_type_functor F) x)).
  - abstract
      (intros C P x y₁ y₂ p π π H ;
       exact H).
  - abstract
      (intros C₁ C₂ C₃ P₁ P₂ P₃ F G HF HG x y₁ y₂ p π π H ;
       use (isBinProduct_eq_arrow _ _
              (composition_preserves_binproduct (HF x) (HG _) _ _ _ _ _ H)) ;
       cbn ;
       rewrite disp_functor_transportf ;
       rewrite transport_f_f ;
       apply maponpaths_2 ;
       apply homset_property).

2. The univalence of this displayed bicategory

3. Product types for comprehension categories

4. Product types for full comprehension categories

Definition disp_bicat_of_prod_type_full_comp_cat
  : disp_bicat bicat_full_comp_cat
  := lift_disp_bicat _ disp_bicat_of_prod_type_comp_cat.

Definition univalent_2_1_disp_bicat_of_prod_type_full_comp_cat
  : disp_univalent_2_1 disp_bicat_of_prod_type_full_comp_cat.
Show proof.

Definition univalent_2_0_disp_bicat_of_prod_type_full_comp_cat
  : disp_univalent_2_0 disp_bicat_of_prod_type_full_comp_cat.
Show proof.

Definition univalent_2_disp_bicat_of_prod_type_full_comp_cat
  : disp_univalent_2 disp_bicat_of_prod_type_full_comp_cat.
Show proof.

Definition disp_2cells_isaprop_disp_bicat_of_prod_type_full_comp_cat
  : disp_2cells_isaprop disp_bicat_of_prod_type_full_comp_cat.
Show proof.

Definition disp_locally_groupoid_disp_bicat_of_prod_type_full_comp_cat
  : disp_locally_groupoid disp_bicat_of_prod_type_full_comp_cat.
Show proof.

5. Adjoint equivalences