Library UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.CounitForUniv
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBuilders.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.DispTransformation.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.CatWithOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseInCat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseDispBicat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.UniverseType.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatWithUniv.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCompCatUniv.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivActions.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivCell.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivIdent.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUniv.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.CounitForUnivMor.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.CounitForUnivNat.
Local Open Scope cat.
Local Open Scope comp_cat.
Definition dfl_comp_cat_to_finlim_disp_psfunctor_counit
: disp_pstrans
(disp_pseudo_id disp_bicat_dfl_full_comp_cat_with_univ)
(disp_pseudo_comp
_ _ _ _ _
dfl_comp_cat_to_finlim_disp_psfunctor_universe
finlim_to_dfl_comp_cat_disp_psfunctor_universe)
finlim_dfl_comp_cat_counit.
use make_disp_pstrans.
- exact disp_2cells_isaprop_disp_bicat_dfl_full_comp_cat_with_univ.
- exact disp_locally_groupoid_disp_bicat_dfl_full_comp_cat_with_univ.
- intros C u.
simple refine (_ ,, _).
+ exact (finlim_dfl_comp_cat_counit_ob (pr1 u)).
+ exact (finlim_dfl_comp_cat_counit_preserves_univ_type (pr1 u) (pr2 u)).
- intros C₁ C₂ F u₁ u₂ Fu.
simple refine (_ ,, _).
+ exact (finlim_dfl_comp_cat_counit_natural_ob_lem F (pr1 Fu)).
+ exact (finlim_dfl_comp_cat_counit_natural_preserves_univ_type F (pr1 Fu) (pr2 Fu)).
Defined.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBuilders.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.DispTransformation.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.CatWithOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseInCat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CatWithUniv.UniverseDispBicat.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatOb.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.UniverseType.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.CompCatUniv.CompCatWithUniv.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCompCatUniv.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivActions.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivCell.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUnivIdent.
Require Import UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.ToCatFinLimUniv.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.CounitForUnivMor.
Require Export UniMath.Bicategories.ComprehensionCat.Universes.Biequiv.CounitForUnivNat.
Local Open Scope cat.
Local Open Scope comp_cat.
Definition dfl_comp_cat_to_finlim_disp_psfunctor_counit
: disp_pstrans
(disp_pseudo_id disp_bicat_dfl_full_comp_cat_with_univ)
(disp_pseudo_comp
_ _ _ _ _
dfl_comp_cat_to_finlim_disp_psfunctor_universe
finlim_to_dfl_comp_cat_disp_psfunctor_universe)
finlim_dfl_comp_cat_counit.
use make_disp_pstrans.
- exact disp_2cells_isaprop_disp_bicat_dfl_full_comp_cat_with_univ.
- exact disp_locally_groupoid_disp_bicat_dfl_full_comp_cat_with_univ.
- intros C u.
simple refine (_ ,, _).
+ exact (finlim_dfl_comp_cat_counit_ob (pr1 u)).
+ exact (finlim_dfl_comp_cat_counit_preserves_univ_type (pr1 u) (pr2 u)).
- intros C₁ C₂ F u₁ u₂ Fu.
simple refine (_ ,, _).
+ exact (finlim_dfl_comp_cat_counit_natural_ob_lem F (pr1 Fu)).
+ exact (finlim_dfl_comp_cat_counit_natural_preserves_univ_type F (pr1 Fu) (pr2 Fu)).
Defined.