Library UniMath.Bicategories.DoubleCategories.DoubleBicat.GlobalUnivalence

1. Horizontally globally univalent Verity double bicategories

2. Vertically globally univalent Verity double bicategories

3. Globally univalent Verity double bicategories

4. Gregarious univalent Verity double bicategories

5. Horizontally globally univalent to gregarious univalent

  Definition hor_globally_univalent_to_gregarious_univalent
             (HB_2_1 : locally_univalent_verity_double_bicat B)
             (HB_2_0 : hor_globally_univalent)
             (H : vertically_saturated B)
    : gregarious_univalent.
  Show proof.
    intros x y.
    use weqhomot.
    - refine (weqfibtototal
                _ _
                (hor_left_adjoint_equivalence_weq_gregarious_equivalence _ _ H)
               make_weq _ (HB_2_0 x y))%weq.
      + apply HB_2_1.
      + use univalent_2_0_weakly_hor_invariant.
        apply HB_2_0.
    - intro p.
      induction p.
      use subtypePath.
      {
        intro.
        use (isofhlevelweqf
               1
               (is_hor_gregarious_equivalence_weq_is_gregarious_equivalence _)).
        apply (isaprop_is_hor_gregarious_equivalence H) ; apply HB_2_1.
      }
      apply idpath.

6. Equivalence of horizontal global univalence and gregarious univalence

  Definition gregarious_univalent_to_hor_globally_univalent
             (H' : weakly_hor_invariant B)
             (HB_2_1 : locally_univalent_verity_double_bicat B)
             (HB_2_0 : gregarious_univalent)
             (H : vertically_saturated B)
    : hor_globally_univalent.
  Show proof.
    intros x y.
    use weqhomot.
    - refine (weqfibtototal
               _ _
               (λ h, invweq
                       (hor_left_adjoint_equivalence_weq_gregarious_equivalence
                          _ _ H h))
              make_weq _ (HB_2_0 x y))%weq.
      + apply HB_2_1.
      + apply H'.
    - intro p.
      induction p.
      use subtypePath.
      {
        intro.
        apply isaprop_left_adjoint_equivalence.
        apply HB_2_1.
      }
      apply idpath.

  Definition hor_globally_univalent_weq_gregarious_univalent
             (H' : weakly_hor_invariant B)
             (HB_2_1 : locally_univalent_verity_double_bicat B)
             (H : vertically_saturated B)
    : hor_globally_univalent
      
      gregarious_univalent.
  Show proof.
End Univalence.