Library UniMath.CategoryTheory.Categories.PrecategoryOfCategories
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Import UniMath.CategoryTheory.FunctorCategory.
Local Open Scope cat.
Definition category_precategory_ob_mor
: precategory_ob_mor
:= make_precategory_ob_mor
category
functor.
Definition category_precategory_data
: precategory_data
:= make_precategory_data
category_precategory_ob_mor
(λ _, functor_identity _)
(λ C₁ C₂ C₃ F G, F ∙ G).
Lemma category_precategory_is_precategory
: is_precategory category_precategory_data.
Show proof.
Definition category_precategory
: precategory
:= make_precategory
category_precategory_data
category_precategory_is_precategory.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Import UniMath.CategoryTheory.FunctorCategory.
Local Open Scope cat.
Definition category_precategory_ob_mor
: precategory_ob_mor
:= make_precategory_ob_mor
category
functor.
Definition category_precategory_data
: precategory_data
:= make_precategory_data
category_precategory_ob_mor
(λ _, functor_identity _)
(λ C₁ C₂ C₃ F G, F ∙ G).
Lemma category_precategory_is_precategory
: is_precategory category_precategory_data.
Show proof.
use make_is_precategory_one_assoc;
intros;
apply (functor_eq _ _ (homset_property _));
now use functor_data_eq.
intros;
apply (functor_eq _ _ (homset_property _));
now use functor_data_eq.
Definition category_precategory
: precategory
:= make_precategory
category_precategory_data
category_precategory_is_precategory.