Library UniMath.CategoryTheory.DisplayedCats.Codomain.CodRightAdjoint

1. The Beck-Chevalley condition

  Proposition cod_right_beck_chevalley
              {w x y z : C}
              (f : x --> w)
              (g : y --> w)
              (h : z --> y)
              (k : z --> x)
              (p : k · f = h · g)
              (H : isPullback p)
    : right_beck_chevalley HD f g h k p (HC x w f) (HC z y h).
  Show proof.
    use right_from_left_beck_chevalley.
    - apply is_right_adjoint_cod_fiber_functor.
    - apply is_right_adjoint_cod_fiber_functor.
    - use cod_left_beck_chevalley.
      apply is_symmetric_isPullback.
      exact H.

2. Dependent products in a locally cartesian closed category

  Definition cod_dependent_products
    : has_dependent_products HD.
  Show proof.
    simple refine (_ ,, _).
    - apply HC.
    - exact @cod_right_beck_chevalley.
End DependentProductsCodomain.