Library UniMath.CategoryTheory.DisplayedCats.Codomain.CodRightAdjoint

1. The Beck-Chevalley condition

  Proposition cod_right_beck_chevalley
              {w x y z : C}
              (f : x --> w)
              (g : y --> w)
              (h : z --> y)
              (k : z --> x)
              (p : k · f = h · g)
              (H : isPullback p)
    : right_beck_chevalley HD f g h k p (HC x w f) (HC z y h).
  Show proof.
    use right_from_left_beck_chevalley.
    - apply is_right_adjoint_cod_fiber_functor.
    - apply is_right_adjoint_cod_fiber_functor.
    - use cod_left_beck_chevalley.
      apply is_symmetric_isPullback.
      exact H.

  Definition lccc_exp_fib_subst
             {Γ Δ : C}
             (s : Γ --> Δ)
             (πA : C/Δ)
             (πB : C/cod_dom πA)
    : z_iso
        (cod_pb PB s (lccc_exp_fib HC πA πB))
        (lccc_exp_fib
           HC
           (cod_pb PB s πA)
           (cod_pb PB (PullbackPr1 _) πB))
    := _
       ,,
       cod_right_beck_chevalley
         _ _ _ _ _
         (isPullback_Pullback (PB _ _ _ (cod_mor πA) s))
         πB.

2. Dependent products in a locally cartesian closed category

  Definition cod_dependent_products
    : has_dependent_products HD.
  Show proof.
    simple refine (_ ,, _).
    - apply HC.
    - exact @cod_right_beck_chevalley.
End DependentProductsCodomain.