Library UniMath.CategoryTheory.DisplayedCats.Constructions.DisplayedSections

Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.

Require Import UniMath.CategoryTheory.DisplayedCats.Core.

Local Open Scope cat.
Local Open Scope mor_disp_scope.

Just like how context morphisms in a CwA can be built up out of terms, similarly, the basic building-block for functors into (total cats of) displayed categories will be analogous to a term.
We call it a section (though we define it intrinsically, not as a section in a (bi)category), since it corresponds to a section of the forgetful functor.
Section Sections.

  Context {C : category}.
  Context {D : disp_cat C}.

1. Displayed sections and their accessors


  Definition section_disp_data : UU
    := (Fob : forall x:C, D x),
      (forall (x y:C) (f:x --> y), Fob x -->[f] Fob y).

  Definition section_disp_on_objects
             (F : section_disp_data) (x : C)
    := pr1 F x : D x.

  Coercion section_disp_on_objects : section_disp_data >-> Funclass.

  Definition section_disp_on_morphisms
             (F : section_disp_data) {x y : C} (f : x --> y)
    := pr2 F _ _ f : F x -->[f] F y.

  Notation "# F" := (section_disp_on_morphisms F)
                      (at level 3) : mor_disp_scope.

  Definition section_disp_axioms
             (F : section_disp_data) : UU
    := ((forall x:C, # F (identity x) = id_disp (F x))
          × (forall (x y z : C) (f : x --> y) (g : y --> z),
                # F (f · g) = (# F f) ;; (# F g))).

  Definition section_disp : UU
    := total2 section_disp_axioms.

  Lemma isaprop_section_disp_axioms (F : section_disp_data)
    (Hmor : (x y : C) (f : x --> y) (c : D x) (d : D y), isaset (c -->[f] d)) :
    isaprop (section_disp_axioms F).
  Show proof.
    apply isapropdirprod.
    - apply impred; intro.
      apply Hmor.
    - do 5 (apply impred; intro).
      apply Hmor.

  Definition section_disp_data_from_section_disp
             (F : section_disp) := pr1 F.

  Coercion section_disp_data_from_section_disp
    : section_disp >-> section_disp_data.

  Definition section_disp_id (F : section_disp)
    := pr1 (pr2 F).

  Definition section_disp_comp (F : section_disp)
    := pr2 (pr2 F).

2. Displayed natural transformations and their accessors


  Definition section_nat_trans_disp_data
      (F F' : section_disp) : UU :=
     (x : C), F x -->[identity _] F' x.

  Definition section_nat_trans_disp_axioms
      {F F': section_disp}
      (nt : section_nat_trans_disp_data F F') : UU :=
     x x' (f : x --> x'),
        transportf _
        (id_right _ @ !(id_left _))
        (section_disp_on_morphisms F f ;; nt x') =
      nt x ;; section_disp_on_morphisms F' f.

  Lemma isaprop_section_nat_trans_disp_axioms
      {F F': section_disp}
      (nt : section_nat_trans_disp_data F F') :
    isaprop (section_nat_trans_disp_axioms nt).
  Show proof.
    do 3 (apply impred; intro).
    apply homsets_disp.

  Definition section_nat_trans_disp
      (F F': section_disp) : UU :=
     (nt : section_nat_trans_disp_data F F'), section_nat_trans_disp_axioms nt.

  Definition section_nt_disp_data_from_section_nt_disp
      {F F': section_disp}
      (nt : section_nat_trans_disp F F')
      : section_nat_trans_disp_data F F'
    := pr1 nt.

  Definition section_nat_trans_data_from_section_nat_trans_disp_funclass
      {F F': section_disp}
      (nt : section_nat_trans_disp F F') :
     x : ob C, F x -->[identity _] F' x := section_nt_disp_data_from_section_nt_disp nt.
  Coercion section_nat_trans_data_from_section_nat_trans_disp_funclass :
      section_nat_trans_disp >-> Funclass.

  Definition section_nt_disp_axioms_from_section_nt_disp
      {F F': section_disp}
      (nt : section_nat_trans_disp F F')
      : section_nat_trans_disp_axioms nt
    := pr2 nt.

  Lemma section_nat_trans_eq (F F' : section_disp) (a a' : section_nat_trans_disp F F'):
    ( x, a x = a' x) -> a = a'.
  Show proof.
    intro H.
    assert (H' : pr1 a = pr1 a').
    { now apply funextsec. }
    apply (total2_paths_f H').
    apply proofirrelevance.
    apply isaprop_section_nat_trans_disp_axioms.

3. The category


  Definition section_nat_trans_id
      (F : section_disp)
      : section_nat_trans_disp F F.
  Show proof.
    use tpair.
    - intro.
      exact (id_disp _).
    - simpl.
      intros x x' f.

      rewrite id_left_disp, id_right_disp.
      unfold transportb.
      rewrite transport_f_f.
      apply maponpaths_2.
      apply homset_property.

  Definition section_nat_trans_comp
      {F F' F'': section_disp}
      (FF' : section_nat_trans_disp F F')
      (F'F'' : section_nat_trans_disp F' F'') :
    section_nat_trans_disp F F''.
  Show proof.
    use tpair.
    - intro x.
      exact (transportf _ (id_left _) (FF' x ;; F'F'' x)).
    - simpl.
      intros x x' f.

      rewrite mor_disp_transportf_prewhisker.
      rewrite mor_disp_transportf_postwhisker.
      rewrite transport_f_f.

      rewrite assoc_disp_var, transport_f_f.
      rewrite <- (section_nt_disp_axioms_from_section_nt_disp F'F'').

      rewrite mor_disp_transportf_prewhisker, transport_f_f.

      do 2 rewrite assoc_disp, transport_f_b.
      rewrite <- (section_nt_disp_axioms_from_section_nt_disp FF').

      rewrite mor_disp_transportf_postwhisker, transport_f_f.

      apply maponpaths_2.
      apply homset_property.

  Definition section_nat_trans_id_left
      {F F': section_disp}
      (FF' : section_nat_trans_disp F F') :
    section_nat_trans_comp (section_nat_trans_id F) FF' = FF'.
  Show proof.
    use section_nat_trans_eq.
    intro x.
    simpl.
    rewrite id_left_disp.
    rewrite transport_f_b.
    apply transportf_set.
    apply homset_property.

  Definition section_nat_trans_id_right
      {F F': section_disp}
      (FF' : section_nat_trans_disp F F') :
    section_nat_trans_comp FF' (section_nat_trans_id F') = FF'.
  Show proof.
    use section_nat_trans_eq.
    intro x.
    simpl.
    rewrite id_right_disp.
    rewrite transport_f_b.
    apply transportf_set.
    apply homset_property.

  Definition section_nat_trans_assoc
      {F1 F2 F3 F4: section_disp}
      (F12 : section_nat_trans_disp F1 F2)
      (F23 : section_nat_trans_disp F2 F3)
      (F34 : section_nat_trans_disp F3 F4) :
    section_nat_trans_comp F12 (section_nat_trans_comp F23 F34) = section_nat_trans_comp (section_nat_trans_comp F12 F23) F34.
  Show proof.
    use section_nat_trans_eq.
    intro x.
    simpl.
    rewrite mor_disp_transportf_postwhisker.
    rewrite mor_disp_transportf_prewhisker.
    do 2 rewrite transport_f_f.
    rewrite assoc_disp.
    rewrite transport_f_b.
    apply maponpaths_2.
    apply homset_property.

  Lemma isaset_section_nat_trans_disp
      (F F': section_disp) :
    isaset (section_nat_trans_disp F F').
  Show proof.
    apply (isofhleveltotal2 2).
    - apply impred. intro t. apply homsets_disp.
    - intro x. apply isasetaprop. apply isaprop_section_nat_trans_disp_axioms.

  Definition section_disp_cat
    : category.
  Show proof.
    use make_category.
    - use make_precategory.
      + use make_precategory_data.
        * use make_precategory_ob_mor.
          -- exact section_disp.
          -- exact section_nat_trans_disp.
        * exact section_nat_trans_id.
        * do 3 intro.
          exact section_nat_trans_comp.
      + use make_is_precategory_one_assoc.
        * do 2 intro.
          exact section_nat_trans_id_left.
        * do 2 intro.
          exact section_nat_trans_id_right.
        * do 4 intro.
          exact section_nat_trans_assoc.
    - exact isaset_section_nat_trans_disp.

End Sections.

Arguments section_disp_data {C} D.
Arguments section_disp {C} D.
Arguments section_disp_cat {C} D.