Library UniMath.CategoryTheory.DisplayedCats.Constructions.FullSubcategory

1. The construction of the full subcategory as a displayed category

2. Univalence


Lemma disp_full_sub_univalent (C : category) (P : C UU) :
  ( x : C, isaprop (P x))
  is_univalent_disp (disp_full_sub C P).
Show proof.
  intro HP.
  apply is_univalent_disp_from_fibers.
  intros x xx xx'. cbn in *.
  apply isweqcontrprop. apply HP.
  apply isofhleveltotal2.
  - apply isapropunit.
  - intro. apply (@isaprop_is_z_iso_disp _ (disp_full_sub C P)).

3. Shortcuts for just the resulting total category


Definition full_subcat (C : category) (P : C UU) : category := total_category (disp_full_sub C P).

Definition is_univalent_full_subcat (C : category) (univC : is_univalent C) (P : C UU) :
  ( x : C, isaprop (P x)) is_univalent (full_subcat C P).
Show proof.
  intro H.
  apply is_univalent_total_category.
  - exact univC.
  - exact (disp_full_sub_univalent _ _ H).