Library UniMath.CategoryTheory.DisplayedCats.Constructions.FullSubcategory
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Total.
Require Import UniMath.CategoryTheory.DisplayedCats.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Univalence.
Local Open Scope cat.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Total.
Require Import UniMath.CategoryTheory.DisplayedCats.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Univalence.
Local Open Scope cat.
Definition disp_full_sub_ob_mor (C : precategory_ob_mor) (P : C → UU)
: disp_cat_ob_mor C
:= (P,, (λ a b aa bb f, unit)).
Definition disp_full_sub_id_comp (C : precategory_data) (P : C → UU)
: disp_cat_id_comp C (disp_full_sub_ob_mor C P).
Show proof.
Definition disp_full_sub_data (C : precategory_data) (P : C → UU)
: disp_cat_data C
:= disp_full_sub_ob_mor C P,, disp_full_sub_id_comp C P.
Lemma disp_full_sub_locally_prop (C : category) (P : C → UU) :
locally_propositional (disp_full_sub_data C P).
Show proof.
Definition disp_full_sub (C : category) (P : C → UU)
: disp_cat C.
Show proof.
use make_disp_cat_locally_prop.
- exact (disp_full_sub_data C P).
- apply disp_full_sub_locally_prop.
- exact (disp_full_sub_data C P).
- apply disp_full_sub_locally_prop.
Lemma disp_full_sub_univalent (C : category) (P : C → UU) :
(∏ x : C, isaprop (P x)) →
is_univalent_disp (disp_full_sub C P).
Show proof.
intro HP.
apply is_univalent_disp_from_fibers.
intros x xx xx'. cbn in *.
apply isweqcontrprop. apply HP.
apply isofhleveltotal2.
- apply isapropunit.
- intro. apply (@isaprop_is_z_iso_disp _ (disp_full_sub C P)).
apply is_univalent_disp_from_fibers.
intros x xx xx'. cbn in *.
apply isweqcontrprop. apply HP.
apply isofhleveltotal2.
- apply isapropunit.
- intro. apply (@isaprop_is_z_iso_disp _ (disp_full_sub C P)).
Definition full_subcat (C : category) (P : C → UU) : category := total_category (disp_full_sub C P).
Definition is_univalent_full_subcat (C : category) (univC : is_univalent C) (P : C → UU) :
(∏ x : C, isaprop (P x)) → is_univalent (full_subcat C P).
Show proof.