Library UniMath.CategoryTheory.DisplayedCats.Examples.DispFunctorPair
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Definition disp_functor_over_pair_data
{C : category}
{D₁ D₂ : disp_cat (category_binproduct C C)}
(F : disp_functor
(functor_identity (category_binproduct C C))
D₁ D₂)
: disp_functor_data
(pair_functor (functor_identity C) (functor_identity C))
D₁ D₂.
Show proof.
Proposition disp_functor_over_pair_laws
{C : category}
{D₁ D₂ : disp_cat (category_binproduct C C)}
(F : disp_functor
(functor_identity (category_binproduct C C))
D₁ D₂)
: disp_functor_axioms (disp_functor_over_pair_data F).
Show proof.
Definition disp_functor_over_pair
{C : category}
{D₁ D₂ : disp_cat (category_binproduct C C)}
(F : disp_functor
(functor_identity (category_binproduct C C))
D₁ D₂)
: disp_functor
(pair_functor (functor_identity C) (functor_identity C))
D₁ D₂.
Show proof.
Definition disp_functor_over_pair_inv_data
{C : category}
{D₁ D₂ : disp_cat (category_binproduct C C)}
(F : disp_functor
(pair_functor (functor_identity C) (functor_identity C))
D₁ D₂)
: disp_functor_data
(functor_identity (category_binproduct C C))
D₁ D₂.
Show proof.
Proposition disp_functor_over_pair_inv_laws
{C : category}
{D₁ D₂ : disp_cat (category_binproduct C C)}
(F : disp_functor
(pair_functor (functor_identity C) (functor_identity C))
D₁ D₂)
: disp_functor_axioms (disp_functor_over_pair_inv_data F).
Show proof.
Definition disp_functor_over_pair_inv
{C : category}
{D₁ D₂ : disp_cat (category_binproduct C C)}
(F : disp_functor
(pair_functor (functor_identity C) (functor_identity C))
D₁ D₂)
: disp_functor
(functor_identity (category_binproduct C C))
D₁ D₂.
Show proof.
{C : category}
{D₁ D₂ : disp_cat (category_binproduct C C)}
(F : disp_functor
(functor_identity (category_binproduct C C))
D₁ D₂)
: disp_functor_data
(pair_functor (functor_identity C) (functor_identity C))
D₁ D₂.
Show proof.
Proposition disp_functor_over_pair_laws
{C : category}
{D₁ D₂ : disp_cat (category_binproduct C C)}
(F : disp_functor
(functor_identity (category_binproduct C C))
D₁ D₂)
: disp_functor_axioms (disp_functor_over_pair_data F).
Show proof.
split.
- intros x xx ; cbn.
refine (disp_functor_id F xx @ _).
apply maponpaths_2.
apply homset_property.
- intros x y z xx yy zz f g ff gg ; cbn.
refine (disp_functor_comp F ff gg @ _).
apply maponpaths_2.
apply homset_property.
- intros x xx ; cbn.
refine (disp_functor_id F xx @ _).
apply maponpaths_2.
apply homset_property.
- intros x y z xx yy zz f g ff gg ; cbn.
refine (disp_functor_comp F ff gg @ _).
apply maponpaths_2.
apply homset_property.
Definition disp_functor_over_pair
{C : category}
{D₁ D₂ : disp_cat (category_binproduct C C)}
(F : disp_functor
(functor_identity (category_binproduct C C))
D₁ D₂)
: disp_functor
(pair_functor (functor_identity C) (functor_identity C))
D₁ D₂.
Show proof.
simple refine (_ ,, _).
- exact (disp_functor_over_pair_data F).
- exact (disp_functor_over_pair_laws F).
- exact (disp_functor_over_pair_data F).
- exact (disp_functor_over_pair_laws F).
Definition disp_functor_over_pair_inv_data
{C : category}
{D₁ D₂ : disp_cat (category_binproduct C C)}
(F : disp_functor
(pair_functor (functor_identity C) (functor_identity C))
D₁ D₂)
: disp_functor_data
(functor_identity (category_binproduct C C))
D₁ D₂.
Show proof.
Proposition disp_functor_over_pair_inv_laws
{C : category}
{D₁ D₂ : disp_cat (category_binproduct C C)}
(F : disp_functor
(pair_functor (functor_identity C) (functor_identity C))
D₁ D₂)
: disp_functor_axioms (disp_functor_over_pair_inv_data F).
Show proof.
split.
- intros x xx ; cbn.
refine (disp_functor_id F xx @ _).
apply transportf_set.
apply homset_property.
- intros x y z xx yy zz f g ff gg ; cbn.
refine (disp_functor_comp F ff gg @ _).
apply transportf_set.
apply homset_property.
- intros x xx ; cbn.
refine (disp_functor_id F xx @ _).
apply transportf_set.
apply homset_property.
- intros x y z xx yy zz f g ff gg ; cbn.
refine (disp_functor_comp F ff gg @ _).
apply transportf_set.
apply homset_property.
Definition disp_functor_over_pair_inv
{C : category}
{D₁ D₂ : disp_cat (category_binproduct C C)}
(F : disp_functor
(pair_functor (functor_identity C) (functor_identity C))
D₁ D₂)
: disp_functor
(functor_identity (category_binproduct C C))
D₁ D₂.
Show proof.
simple refine (_ ,, _).
- exact (disp_functor_over_pair_inv_data F).
- exact (disp_functor_over_pair_inv_laws F).
- exact (disp_functor_over_pair_inv_data F).
- exact (disp_functor_over_pair_inv_laws F).
Definition disp_functor_over_pair_weq
{C : category}
(D₁ D₂ : disp_cat (category_binproduct C C))
: disp_functor
(functor_identity (category_binproduct C C))
D₁ D₂
≃
disp_functor
(pair_functor (functor_identity C) (functor_identity C))
D₁ D₂.
Show proof.
{C : category}
(D₁ D₂ : disp_cat (category_binproduct C C))
: disp_functor
(functor_identity (category_binproduct C C))
D₁ D₂
≃
disp_functor
(pair_functor (functor_identity C) (functor_identity C))
D₁ D₂.
Show proof.
use weq_iso.
- exact disp_functor_over_pair.
- exact disp_functor_over_pair_inv.
- abstract
(intro F ;
use subtypePath ; [ intro ; apply isaprop_disp_functor_axioms | ] ;
apply idpath).
- abstract
(intro F ;
use subtypePath ; [ intro ; apply isaprop_disp_functor_axioms | ] ;
apply idpath).
- exact disp_functor_over_pair.
- exact disp_functor_over_pair_inv.
- abstract
(intro F ;
use subtypePath ; [ intro ; apply isaprop_disp_functor_axioms | ] ;
apply idpath).
- abstract
(intro F ;
use subtypePath ; [ intro ; apply isaprop_disp_functor_axioms | ] ;
apply idpath).