Library UniMath.CategoryTheory.Equivalences.EquivalenceFromComp

1. F* is an equivalence


  Definition lan_after_pre_comp_iso
    (P : [C'', D])
    : z_iso (lan_functor HD F' (pre_comp_functor F' P)) P.
  Show proof.

  Definition lan_after_pre_comp_iso_is_counit
    (P : [C'', D])
    : z_iso_mor (lan_after_pre_comp_iso P)
    = counit_from_right_adjoint (is_right_adjoint_precomposition HD F') P.
  Show proof.
    apply invmap_eq.
    apply (maponpaths (pre_whisker_in_funcat C C' D F)).
    apply nat_trans_eq_alt.
    intro c.
    apply colim_mor_eq.
    intro v.
    refine (colimArrowCommutes _ _ _ _ @ !_).
    refine (colim_mor_commute _ _ _ _ _ @ !_).
    apply (maponpaths #(P : C'' D)).
    apply (homotweqinvweq (weq_from_fully_faithful _ _ _)).

  Definition adjoint_equivalence_1_from_comp
    : adj_equivalence_of_cats (pre_comp_functor (C := D) F').
  Show proof.
    use adj_equivalence_from_right_adjoint.
    - apply (is_right_adjoint_precomposition HD).
    - intro P.
      exact (z_iso_is_z_isomorphism (pre_comp_after_lan_iso _ HF' _ HD P)).
    - intro P.
      exact (is_z_isomorphism_path
        (lan_after_pre_comp_iso_is_counit P)
        (z_iso_is_z_isomorphism (lan_after_pre_comp_iso P))).

2. F'* is an equivalence