Library UniMath.CategoryTheory.GrothendieckToposes.Toposes

1. The property of being a Grothendieck topos

2. Grothendieck toposes

3. The recursion and induction principles


Lemma Grothendieck_topos_rect
  (P : category UU)
  (HP : (D : site), P (sheaf_cat D))
  {C : category}
  (HU : is_univalent C)
  (HT : Grothendieck_topos_structure C)
  : P C.
Show proof.

Lemma Grothendieck_topos_ind
  (P : category hProp)
  (HP : (D : site), P (sheaf_cat D))
  {C : category}
  (HU : is_univalent C)
  (HT : is_Grothendieck_topos C)
  : P C.
Show proof.
  revert HT.
  apply hinhuniv.
  exact (Grothendieck_topos_rect P HP HU).