Library UniMath.CategoryTheory.YonedaBinproducts

****************************************************************************
Yoneda commutes with binary products up to iso (iso_yoneda_binproducts).
Written by: Elisabeth Bonnevier, 2019
First we create a natural transformation from Yon(X × Y) to Yon(X) × Yon(Y).
Second, we create a natural transformation from Yon(X) × Yon(Y) to Yon(X × Y).
Definition yon_binprod_inv_nat_trans_data :
  nat_trans_data (pr1 (BinProductObject _ (BinProducts_PreShv (yon X) (yon Y))))
                 (pr1 (yon (BinProductObject _ (PC X Y)))).
Show proof.
  intros Z [f1 f2].
  exact (BinProductArrow _ (PC X Y) f1 f2).

Lemma is_nat_trans_yon_binprod_inv : is_nat_trans _ _ yon_binprod_inv_nat_trans_data.
Show proof.
  unfold yon_binprod_inv_nat_trans_data.
  intros Z W f.
  use funextfun; intros [g1 g2]; cbn.
  use BinProductArrowsEq; rewrite <- assoc.
  - now rewrite !BinProductPr1Commutes.
  - now rewrite !BinProductPr2Commutes.

Definition yon_binprod_inv_nat_trans :
  nat_trans (pr1 (BinProductObject _ (BinProducts_PreShv (yon X) (yon Y))))
            (pr1 (yon (BinProductObject _ (_ X Y)))) :=
  make_nat_trans _ _ _ is_nat_trans_yon_binprod_inv.

We now show that the first transformation is an isomorphism by showing that the second transformation is its inverse.
Lemma yon_binprod_is_inverse :
  is_inverse_in_precat (C := [C^op, HSET, has_homsets_HSET])
    yon_binprod_nat_trans
    yon_binprod_inv_nat_trans.
Show proof.
  split;
  apply nat_trans_eq_alt;
  intro Z;
  apply funextfun;
  intro f.
  - symmetry.
    apply BinProductArrowEta.
  - apply dirprodeq.
    + apply BinProductPr1Commutes.
    + apply BinProductPr2Commutes.

The functors Yon(X × Y) and Yon(X) × Yon(Y) are isomorphic.