Library Nijn.Prelude.Basics.Lemmas
Definition isNil {A : Type} (l : list A) : Prop :=
match l with
| nil ⇒ True
| _ ⇒ False
end.
Proposition isNil_no_member
{A : Type}
(l : list A)
(Hl : isNil l)
(x : A)
: ~(In x l).
Proof.
induction l ; cbn in ×.
- exact (fun z ⇒ z).
- contradiction.
Qed.
match l with
| nil ⇒ True
| _ ⇒ False
end.
Proposition isNil_no_member
{A : Type}
(l : list A)
(Hl : isNil l)
(x : A)
: ~(In x l).
Proof.
induction l ; cbn in ×.
- exact (fun z ⇒ z).
- contradiction.
Qed.