Library UniMath.Bicategories.MonoidalCategories.PointedFunctorsWhiskeredMonoidal
**********************************************************
Ralph Matthes
2022
**********************************************************
Contents :
- build monoidal category in whiskered form for the pointed endofunctors through a displayed monoidal category
Require Import UniMath.Foundations.PartD.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require UniMath.CategoryTheory.PointedFunctors.
Require UniMath.CategoryTheory.PointedFunctorsComposition.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Total.
Require Import UniMath.CategoryTheory.DisplayedCats.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.WhiskeredDisplayedBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.Monoidal.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.TotalMonoidal.
Require Import UniMath.CategoryTheory.Monoidal.Examples.MonoidalPointedObjects.
Require Import UniMath.Bicategories.MonoidalCategories.EndofunctorsWhiskeredMonoidal.
Require Import UniMath.CategoryTheory.coslicecat.
Import MonoidalNotations.
Local Open Scope cat.
Section A.
Context (C : category).
Definition pointedfunctors_disp_cat : disp_cat (cat_of_endofunctors C)
:= coslice_cat_disp (cat_of_endofunctors C) I_{monoidal_of_endofunctors C}.
Definition pointedfunctors_cat : category := total_category pointedfunctors_disp_cat.
Definition pointedfunctors_disp_moncat : disp_monoidal pointedfunctors_disp_cat
(monoidal_of_endofunctors C)
:= monoidal_pointed_objects_disp (monoidal_of_endofunctors C).
Definition pointedfunctors_moncat : monoidal pointedfunctors_cat
:= total_monoidal pointedfunctors_disp_moncat.
End A.