Library UniMath.CategoryTheory.Core.EssentiallyAlgebraic

Precategories in style of essentially algebraic cats

Of course we later want SETS of objects, rather than types, but the construction can already be specified.

Require Import UniMath.Foundations.PartA.
Require Import UniMath.Foundations.Sets.

Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Setcategories.

Local Open Scope cat.

Definition total_morphisms (C : precategory_ob_mor) := total2 (
   fun ab : dirprod (ob C)(ob C) =>
        precategory_morphisms (pr1 ab) (pr2 ab)).

Lemma isaset_setcategory_total_morphisms (C : setcategory):
   isaset (total_morphisms C).
Show proof.
  change isaset with (isofhlevel 2).
  apply isofhleveltotal2.
  apply isofhleveldirprod.
  - exact (pr1 (pr2 C)).
  - exact (pr1 (pr2 C)).
  - intro ab; apply ((pr2 (pr2 C)) (dirprod_pr1 ab) (dirprod_pr2 ab)).

Definition setcategory_total_morphisms_set (C : setcategory) : hSet :=
    make_hSet _ (isaset_setcategory_total_morphisms C).

Definition precategory_source (C : precategory_ob_mor) :
     total_morphisms C -> ob C :=
     λ abf, pr1 (pr1 abf).

Definition precategory_target (C : precategory_ob_mor) :
     total_morphisms C -> ob C :=
     λ abf, pr2 (pr1 abf).

Definition precategory_total_id (C : precategory_data) :
      ob C -> total_morphisms C :=
      λ c, tpair _ (make_dirprod c c) (identity c).

Definition precategory_total_comp'' (C : precategory_data) :
       f g : total_morphisms C,
        precategory_target C f = precategory_source C g ->
         total_morphisms C.
Show proof.
  intros f g e.
  destruct f as [[a b] f]. simpl in *.
  destruct g as [[b' c] g]. simpl in *.
  unfold precategory_target in e; simpl in e.
  unfold precategory_source in e; simpl in e.
  simpl.
  exists (make_dirprod a c). simpl.
  exact ((f · idtomor _ _ e) · g).

Definition precategory_total_comp (C : precategory_data) :
       f g : total_morphisms C,
        precategory_target C f = precategory_source C g ->
         total_morphisms C :=
  λ f g e,
     tpair _ (make_dirprod (pr1 (pr1 f))(pr2 (pr1 g)))
        ((pr2 f · idtomor _ _ e) · pr2 g).