Library UniMath.CategoryTheory.DaggerCategories.Examples.Groupoids


Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.

Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.

Require Import UniMath.CategoryTheory.Groupoids.

Require Import UniMath.CategoryTheory.DaggerCategories.Categories.
Require Import UniMath.CategoryTheory.DaggerCategories.Unitary.
Require Import UniMath.CategoryTheory.DaggerCategories.Univalence.

Local Open Scope cat.

Section GroupoidsAsDaggers.

  Context (C : groupoid).

  Definition GRP_dagger_structure : dagger_structure C.
  Show proof.
    intros x y f.
    exact (pr1 (z_iso_inv (_ ,, groupoid_is_pregroupoid C x y f))).

  Lemma GRP_dagger_laws : dagger_laws GRP_dagger_structure.
  Show proof.
    repeat split ; intro ; intros ; use inverse_unique_precat.
    - exact (identity x).
    - apply groupoid_is_pregroupoid.
    - apply is_inverse_in_precat_identity.
    - exact (f · g).
    - apply groupoid_is_pregroupoid.
    - apply is_inverse_in_precat_comp ; apply groupoid_is_pregroupoid.
    - apply groupoid_is_pregroupoid ; exact f.
    - apply groupoid_is_pregroupoid.
    - apply is_inverse_in_precat_inv ; apply groupoid_is_pregroupoid.

  Definition GRP_dagger : dagger C
    := _ ,, GRP_dagger_laws.

End GroupoidsAsDaggers.

Section UnivalenceOfGroupoids.

  Context (C : groupoid).

  Definition univalence_to_dagger_univalence
        {x y : C} (f : z_iso x y)
    : unitary (GRP_dagger C) x y.
  Show proof.
    exists (morphism_from_z_iso _ _ f).
    apply groupoid_is_pregroupoid.

  Definition dagger_univalence_to_univalence
             {x y : C} (f : unitary (GRP_dagger C) x y)
    : z_iso x y
    := make_z_iso _ _ (pr2 f).

  Definition z_iso_is_unitary (x y : C)
    : z_iso x y unitary (GRP_dagger C) x y.
  Show proof.
    use weq_iso.
    - exact (λ p, univalence_to_dagger_univalence p).
    - exact (λ p, dagger_univalence_to_univalence p).
    - intro ; apply z_iso_eq, idpath.
    - intro ; apply unitary_eq, idpath.

  Lemma idtodagger_as_idtoiso_pointwise {x y : C} (p : x = y)
    : idtodaggeriso (GRP_dagger C) x y p = z_iso_is_unitary x y (idtoiso p).
  Show proof.
    apply (unitary_eq (idtodaggeriso (GRP_dagger C) x y p) (univalence_to_dagger_univalence (idtoiso p))).
    induction p ; apply idpath.

  Lemma idtoiso_as_idtodagger_pointwise {x y : C} (p : x = y)
    : idtoiso p = dagger_univalence_to_univalence (idtodaggeriso (GRP_dagger C) x y p).
  Show proof.
    apply (z_iso_eq (idtoiso p) (dagger_univalence_to_univalence (idtodaggeriso (GRP_dagger C) x y p))).
    induction p ; apply idpath.

  Definition groupoid_univalence_equiv_dagger_univalence
    : is_univalent C is_univalent_dagger (GRP_dagger C).
  Show proof.
    use weqimplimpl.
    - intros u x y.
      apply (isweqhomot' (λ p, z_iso_is_unitary x y (idtoiso p))).
      + apply (twooutof3c (idtoiso (a := x) (b := y)) (z_iso_is_unitary x y)).
        * apply u.
        * apply z_iso_is_unitary.
      + apply (λ p, ! idtodagger_as_idtoiso_pointwise p).
    - intros u x y.
      apply (isweqhomot' (λ p, invweq (z_iso_is_unitary x y) (idtodaggeriso (GRP_dagger C) _ _ p))).
      + apply (twooutof3c (idtodaggeriso (GRP_dagger C) x y) (invweq (z_iso_is_unitary x y))).
        * apply u.
        * apply (invweq (z_iso_is_unitary _ _)).
      + apply (λ p, ! idtoiso_as_idtodagger_pointwise p).
    - apply isaprop_is_univalent.
    - apply isaprop_is_univalent_dagger.

End UnivalenceOfGroupoids.