Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.EquivalenceWhiskeredNonCurriedMonoidalCategories

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.

Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.

Require Import UniMath.CategoryTheory.Monoidal.WhiskeredBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.MonoidalCategoriesTensored.
Require Import UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.MonoidalCategoriesReordered.

Section MonoidalCategoriesReordered0.

  Definition lunitor0_nattrans {C : category} (T : bifunctor C C C) (I : C) : UU
    := lu : leftunitor_data T I, leftunitor_nat lu.

  Definition lunitor0 {C : category} (T : bifunctor C C C) (I : C) : UU
    := lu : lunitor0_nattrans T I, lui : leftunitorinv_data T I, leftunitor_iso_law (pr1 lu) lui.

  Definition runitor0_nattrans {C : category} (T : bifunctor C C C) (I : C) : UU
    := ru : rightunitor_data T I, rightunitor_nat ru.
  Definition runitor0 {C : category} (T : bifunctor C C C) (I : C) : UU
    := ru : runitor0_nattrans T I, rui : rightunitorinv_data T I, rightunitor_iso_law (pr1 ru) rui.

  Definition associator0_nattrans {C : category} (T : bifunctor C C C) : UU
    := ass : associator_data T,
        associator_nat_leftwhisker ass × associator_nat_rightwhisker ass × associator_nat_leftrightwhisker ass.
  Definition associator0 {C : category} (T : bifunctor C C C) : UU
    := ass : associator0_nattrans T, assi : associatorinv_data T, associator_iso_law (pr1 ass) assi.

  Definition monstruct0 (C : category) : UU
    := T : bifunctor C C C, I : C, lu : lunitor0 T I, ru : runitor0 T I, ass : associator0 T,
                triangle_identity (pr11 lu) (pr11 ru) (pr11 ass) × pentagon_identity (pr11 ass).

  Definition moncats0 : UU := C : category, monstruct0 C.

End MonoidalCategoriesReordered0.

Section EquivalenceMonoidalCategoriesReordered0WithMonstructs.

  Definition moncats : UU := C : category, monoidal_struct C.

  Lemma moncats_equiv_moncats0
    : moncats moncats0.
  Show proof.
    apply weqfibtototal.
    intro C.
    unfold monoidal_struct ; unfold monstruct0.
    use weq_iso.
    - intro M.
      exists (pr111 M).
      exists (pr211 M).
      repeat (use tpair).
      * intro x ; apply (pr1 (pr121 M) x).
      * intros x y f ; apply (pr2 (pr121 M) x y f).
      * intro x ; apply (pr1 (pr122 M) x).
      * intro x ; apply (pr2 (pr122 M) x).

      * intro x ; apply (pr11 (pr221 M) x).
      * intros x y f ; apply (pr21 (pr221 M) x y f).
      * intro x ; apply (pr11 (pr222 M) x).
      * intro x ; apply (pr21 (pr222 M) x).

      * intros x y z ; apply (pr12 (pr221 M) x y z).
      * intro ; intros ; apply (pr122 (pr221 M)).
      * intro ; intros ; apply (pr1 (pr222 (pr221 M))).
      * intro ; intros ; apply (pr2 (pr222 (pr221 M))).
      * intro ; intros ; apply ((pr12 (pr222 M))).
      * intro ; intros ; apply ((pr22 (pr222 M))).
      * intro ; intros ; apply (pr112 M).
      * intro ; intros ; apply (pr212 M).
    - intro M.
      use tpair.
      + exists (pr1 M ,, pr12 M).
        repeat split ; apply (pr22 M).
      + simpl.
        repeat split.
        * apply (pr22 (pr222 M)).
        * apply (pr22 (pr222 M)).
        * apply ((pr122 M)).
        * apply (pr1 (pr222 M)).
        * apply (pr12 (pr222 M)).
    - apply idpath.
    - apply idpath.

End EquivalenceMonoidalCategoriesReordered0WithMonstructs.

Section EquivalenceMonoidalCategoriesReordered0WithUncurried.

  Definition lunitors_equiv {C : category} (T : bifunctor C C C) (I : C)
    : lunitor0 T I left_unitor (bifunctor_to_functorfromproductcat T) I.
  Show proof.
    use weqtotal2.
    {
      use weqtotal2.
      - apply idweq.
      - intro lu.
        use weq_iso.

        + intro lunat.
          intros x y f.
          etrans. { apply maponpaths_2 ; apply when_bifunctor_becomes_leftwhiskering. }
          apply (lunat x y f).

        + intro lunattrans.
          intros x y f.
          use (_ @ lunattrans x y f).
          apply maponpaths_2.
          apply (! when_bifunctor_becomes_leftwhiskering _ _ _).

        + intro.
          repeat (apply impred_isaprop ; intro) ; apply homset_property.

        + intro.
          apply isaprop_is_nat_trans.
          apply homset_property.
    }
    intro lunat.
    simpl.
    use (weqtotaltoforall (X := C) (λ x, C x, bifunctor_on_objects T I x )).

  Definition runitors_equiv {C : category} (T : bifunctor C C C) (I : C)
    : runitor0 T I right_unitor (bifunctor_to_functorfromproductcat T) I.
  Show proof.
    use weqtotal2.
    {
      use weqtotal2.
      - apply idweq.
      - intro lu.
        use weq_iso.

        + intro runat.
          intros x y f.
          etrans. { apply maponpaths_2 ; apply when_bifunctor_becomes_rightwhiskering. }
          apply (runat x y f).

        + intro runattrans.
          intros x y f.
          use (_ @ runattrans x y f).
          apply maponpaths_2.
          apply (! when_bifunctor_becomes_rightwhiskering _ _ _).

        + intro.
          repeat (apply impred_isaprop ; intro) ; apply homset_property.

        + intro.
          apply isaprop_is_nat_trans.
          apply homset_property.
    }
    intro.
    simpl.
    use (weqtotaltoforall (X := C) (λ x, C x , bifunctor_on_objects T x I )).

  Lemma nat_trans_associator_leftwhisker
    {C : category} {T : bifunctor C C C} {ass : associator_data T}
    (assnattrans : is_nat_trans
      (assoc_left (bifunctor_to_functorfromproductcat T))
      (assoc_right (bifunctor_to_functorfromproductcat T))
      (λ xyz, ass (pr11 xyz) (pr21 xyz) (pr2 xyz)))
    : associator_nat_leftwhisker ass.
  Show proof.
    intros x y z1 z2 h.
    set (t := ! assnattrans _ _ ((id x #, id y) #, h)).
    simpl in t.
    unfold functoronmorphisms1 in t.
    refine (_ @ t @ _).
    {
      etrans.
      2: { apply maponpaths ; apply maponpaths_2 ; apply when_bifunctor_becomes_rightwhiskering. }
      etrans.
      2: { apply maponpaths ; apply maponpaths_2 ; use (! bifunctor_distributes_over_id _ _ _ _) ; apply T. }
      apply maponpaths.

      etrans.
      2: { do 2 apply maponpaths ; apply maponpaths_2 ; apply when_bifunctor_becomes_rightwhiskering. }
      etrans.
      2: {
        do 2 apply maponpaths ; apply maponpaths_2 ; use (! bifunctor_distributes_over_id _ _ _ _) ; apply T. }
      etrans.
      2: { do 2 apply maponpaths ; apply (! id_left _). }
      apply (! id_left _).
    }

    etrans.
    {
      do 2 apply maponpaths_2.
      etrans. {
        apply maponpaths.
        etrans. { apply maponpaths ; apply bifunctor_leftid. }
        etrans. { apply id_right. }
        apply bifunctor_rightid.
      }
      apply bifunctor_rightid.
    }
    etrans. { apply assoc'. }
    apply id_left.

  Lemma nat_trans_associator_rightwhisker
    {C : category} {T : bifunctor C C C} {ass : associator_data T}
    (assnattrans : is_nat_trans
      (assoc_left (bifunctor_to_functorfromproductcat T))
      (assoc_right (bifunctor_to_functorfromproductcat T))
      (λ xyz, ass (pr11 xyz) (pr21 xyz) (pr2 xyz)))
    : associator_nat_rightwhisker ass.
  Show proof.
    intros x1 x2 y z f.
    set (t := ! assnattrans _ _ ((f #, id y) #, id z)).
    simpl in t.
    unfold functoronmorphisms1 in t.
    refine (_ @ t @ _).
    {
      etrans.
      2: { apply maponpaths ; apply maponpaths_2 ; apply when_bifunctor_becomes_rightwhiskering. }
      etrans.
      2: {
        apply maponpaths ; apply maponpaths_2.
        apply (! when_bifunctor_becomes_rightwhiskering _ _ _).
      }
      apply maponpaths.

      etrans.
      2: { do 2 apply maponpaths ; apply maponpaths_2 ; apply when_bifunctor_becomes_rightwhiskering. }
      etrans.
      2: {
        do 2 apply maponpaths ; apply maponpaths_2 ; use (! bifunctor_distributes_over_id _ _ _ _) ; apply T. }
      etrans.
      2: { do 2 apply maponpaths ; apply (! id_left _). }
      etrans.
      2: { do 2 apply maponpaths ; apply (! bifunctor_leftid _ _ _). }
      etrans.
      2: {
        apply maponpaths.
        apply (! bifunctor_leftid _ _ _).
      }
      apply (! id_right _).
    }

    etrans.
    {
      do 2 apply maponpaths_2.
      apply maponpaths.
      etrans. { apply maponpaths ; apply bifunctor_leftid. }
      apply id_right.
    }
    etrans. {
      apply maponpaths_2 ; apply maponpaths.
      apply bifunctor_leftid.
    }

    etrans. { apply assoc'. }
    apply maponpaths.
    apply id_left.

  Lemma nat_trans_associator_leftrightwhisker
    {C : category} {T : bifunctor C C C} {ass : associator_data T}
    (assnattrans : is_nat_trans
      (assoc_left (bifunctor_to_functorfromproductcat T))
      (assoc_right (bifunctor_to_functorfromproductcat T))
      (λ xyz, ass (pr11 xyz) (pr21 xyz) (pr2 xyz)))
    : associator_nat_leftrightwhisker ass.
  Show proof.
    intros x y1 y2 z g.
    set (t := ! assnattrans _ _ ((id x #, g) #, id z)).
    simpl in t.
    refine (_ @ t @ _).
    {
      etrans.
      2: { do 2 apply maponpaths ; apply (! when_bifunctor_becomes_rightwhiskering _ _ _). }
      apply maponpaths.
      apply (! when_bifunctor_becomes_leftwhiskering _ _ _).
    }
    etrans.
    { do 2 apply maponpaths_2 ; apply when_bifunctor_becomes_leftwhiskering. }
    apply maponpaths_2.
    apply when_bifunctor_becomes_rightwhiskering.

  Definition associators_equiv {C : category} (T : bifunctor C C C)
    : associator0 T associator (bifunctor_to_functorfromproductcat T).
  Show proof.
    use weqtotal2.
    {
      use weqtotal2.
      - use weq_iso.
        { exact (λ ass xyz, ass (pr11 xyz) (pr21 xyz) (pr2 xyz)). }
        { exact (λ nt x y z, nt ((x,,y),,z)). }
        { intro ; apply idpath. }
        intro ; apply idpath.

      - intro ass.
        use weq_iso.

        + intro assnat.
          do 3 intro.
          cbn.
          unfold functoronmorphisms1.
          cbn.
          rewrite !assoc.
          rewrite (pr12 assnat).
          rewrite !assoc'.
          refine (!_).
          etrans. {
            apply maponpaths.
            rewrite (bifunctor_leftcomp T).
            rewrite !assoc.
            rewrite (pr22 assnat).
            apply idpath.
          }
          etrans. {
            apply cancel_precomposition.
            rewrite assoc'.
            apply cancel_precomposition.
            apply (pr1 assnat).
          }
          rewrite !assoc.
          apply cancel_postcomposition.
          apply pathsinv0.
          rewrite (bifunctor_rightcomp T).
          apply idpath.
        + abstract exact (λ assnattrans,
              (nat_trans_associator_leftwhisker assnattrans) ,,
              (nat_trans_associator_rightwhisker assnattrans) ,,
              (nat_trans_associator_leftrightwhisker assnattrans)
            ).
        + intro ; repeat (apply isapropdirprod) ; repeat (apply impred_isaprop ; intro) ; apply homset_property.
        + intro. repeat (apply impred_isaprop ; intro) ; apply homset_property.
    }

    intro ass.

    refine (weqtotaltoforall (X := precategory_binproduct_data (precategory_binproduct_data C C) C) _ _ _)%weq.
    use weqtotal2.
    {
      use weq_iso.
      { exact (λ assinv xyz, assinv (pr11 xyz) (pr21 xyz) (pr2 xyz)). }
      { exact (λ assinv x y z, assinv ((x,,y),,z)). }
      { intro ; apply idpath. }
      { intro ; apply idpath. }
    }
    intro assinv.
    apply weqimplimpl.
    - intros isolaw xyz.
      apply isolaw.
    - intros isolaw x y z.
      apply (isolaw ((x,,y),,z)).
    - repeat (apply impred_isaprop ; intro) ; apply isaprop_is_inverse_in_precat.
    - repeat (apply impred_isaprop ; intro) ; apply isaprop_is_inverse_in_precat.

  Definition moncats0_equiv_uncurried
    : moncats0 monoidal_cat.
  Show proof.
    apply weqfibtototal.
    intro C.
    use weqtotal2.
    { apply bifunctor_equiv_functorfromproductcat. }
    intro T.
    use weqtotal2.
    { apply idweq. }
    intro I.
    use weqtotal2.
    { apply lunitors_equiv. }
    intro lu.
    use weqtotal2.
    { apply runitors_equiv. }
    intro ru.
    use weqtotal2.
    { apply associators_equiv. }
    intro ass.

    apply weqdirprodf ; apply weqimplimpl.
    {
      intros ti x y.
      etrans. { apply when_bifunctor_becomes_rightwhiskering. }
      etrans.
      2: { apply maponpaths ; apply (! when_bifunctor_becomes_leftwhiskering _ _ _). }
      apply (! ti x y).
    }
    {
      intros ti x y.
      refine (_ @ ! ti x y @ _).
      - apply maponpaths.
        apply (! when_bifunctor_becomes_leftwhiskering _ _ _).
      - apply when_bifunctor_becomes_rightwhiskering.
    }
    { repeat (apply impred_isaprop ; intro) ; apply homset_property. }
    { repeat (apply impred_isaprop ; intro) ; apply homset_property. }

    {
      intros pi w x y z.
      refine (! pi w x y z @ _).
      etrans.
      2: { do 2 apply maponpaths_2 ; apply (! when_bifunctor_becomes_rightwhiskering _ _ _). }
      apply maponpaths.
      apply (! when_bifunctor_becomes_leftwhiskering _ _ _).
    }
    {
      intros pi w x y z.
      refine (_ @ ! pi w x y z).
      simpl.
      etrans.
      2: { do 2 apply maponpaths_2 ; apply (! when_bifunctor_becomes_rightwhiskering _ _ _). }
      apply maponpaths.
      apply (! when_bifunctor_becomes_leftwhiskering _ _ _).
    }
    { repeat (apply impred_isaprop ; intro) ; apply homset_property. }
    repeat (apply impred_isaprop ; intro) ; apply homset_property.

End EquivalenceMonoidalCategoriesReordered0WithUncurried.