Library UniMath.CategoryTheory.SkewMonoidal.CategoriesOfMonoids

Categories of skew monoids for skew monoidal categories
Ambroise LAFONT 2020

Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.SkewMonoidal.SkewMonoidalCategories.

Local Open Scope cat.

Section Precategory_of_SkewMonoids.

Context (V : skewmonoidal_category).

Notation tensor := (skewmonoidal_tensor V).
Notation I := (skewmonoidal_I V).
Notation "C ⊠ D" := (category_binproduct C D) (at level 38).
Notation "( c , d )" := (make_catbinprod c d).
Notation "( f #, g )" := (catbinprodmor f g).
Notation "X ⊗ Y" := (tensor (X , Y)).

Notation "f #⊗ g" :=
   (functor_on_morphisms (functor_data_from_functor _ _ tensor) (f #, g))
                         (at level 31).

Notation α' := (skewmonoidal_assoc (data_from_skewmonoidal V)).
Notation λ' := (skewmonoidal_unitl (data_from_skewmonoidal V)).
Notation ρ' := (skewmonoidal_unitr (data_from_skewmonoidal V)).

Definition skewMonoid_data : UU :=
   X : V, (X X --> X) × (I --> X).

Coercion sm_ob (X : skewMonoid_data) : V := pr1 X.

Definition sm_unit (X : skewMonoid_data) : I --> X := pr2 (pr2 X).
Definition sm_mult (X : skewMonoid_data) : X X --> X := pr1 (pr2 X).

Local Notation η := sm_unit.
Local Notation μ := sm_mult.

Definition skewMonoid_laws (X : skewMonoid_data) : UU :=
        (μ X #⊗ identity X · μ X = α' X X X · identity X #⊗ μ X · μ X) ×
        (η X #⊗ identity X · μ X = λ' X) × (ρ' X · identity X #⊗ η X · μ X = identity _).
Definition skewMonoid : UU := (X : skewMonoid_data), skewMonoid_laws X.

Coercion skewMonoid_to_data (X : skewMonoid) : skewMonoid_data := pr1 X.

Definition skewMonoid_pentagon (X : skewMonoid) :
  μ X #⊗ identity X · μ X = α' X X X · identity X #⊗ μ X · μ X
                                := pr1 (pr2 X).

Definition skewMonoid_unitl (X : skewMonoid) :
  ( η X #⊗ identity X · μ X = λ' X) := pr1 (pr2 (pr2 X)).

Definition skewMonoid_unitr (X : skewMonoid) :
  ( ρ' X · identity X #⊗ η X · μ X = identity _)
  := pr2 (pr2 (pr2 X)).

Definition skewMonoid_Mor_laws {T T' : skewMonoid_data} (α : V T , T')
  : UU :=
   (μ T · α = α #⊗ α · μ T')
                × η T · α = η T'.

Lemma isaprop_skewMonoid_Mor_laws
  (T T' : skewMonoid_data ) (α : V T , T' )
  : isaprop (skewMonoid_Mor_laws α).
Show proof.
  apply isapropdirprod; apply homset_property.

Definition skewMonoid_Mor (T T' : skewMonoid_data) : UU
  := α , @skewMonoid_Mor_laws T T' α.

Coercion mor_from_monoid_mor (T T' : skewMonoid_data) (s : skewMonoid_Mor T T')
  : V T , T' := pr1 s.

Definition skewMonoid_Mor_η {T T' : skewMonoid_data } (α : skewMonoid_Mor T T')
  : η T · α = η T' := pr2 (pr2 α).

Definition skewMonoid_Mor_μ {T T' : skewMonoid_data } (α : skewMonoid_Mor T T')
  : μ T · α = α #⊗ α · μ T' := pr1 (pr2 α).

Lemma skewMonoid_identity_laws (T : skewMonoid_data )
  : skewMonoid_Mor_laws (identity T).
Show proof.
  split; simpl.
  - rewrite id_right.
    etrans;[apply pathsinv0, id_left|].
    apply cancel_postcomposition.
    apply pathsinv0.
    apply (functor_id tensor).
  - apply id_right.

Definition skewMonoid_identity (T : skewMonoid_data)
  : skewMonoid_Mor T T := tpair _ _ (skewMonoid_identity_laws T).

Lemma skewMonoid_composition_laws {T T' T'' : skewMonoid_data }
      (α : skewMonoid_Mor T T') (α' : skewMonoid_Mor T' T'') : skewMonoid_Mor_laws (α · α').
Show proof.
  split; intros; simpl.
  - rewrite assoc.
    set (H:=skewMonoid_Mor_μ α ); simpl in H.
    rewrite H; clear H; rewrite <- !assoc.
    set (H:=skewMonoid_Mor_μ α' ); simpl in H.
    etrans;[apply cancel_precomposition,H|].
    clear H.
    etrans;[apply assoc|].
    apply cancel_postcomposition.
    apply pathsinv0.
    apply (functor_comp tensor (_ #, _) (_ #, _)).
  - rewrite assoc.
    eapply pathscomp0; [apply cancel_postcomposition, skewMonoid_Mor_η|].
    apply skewMonoid_Mor_η.

Definition skewMonoid_composition {T T' T'' : skewMonoid_data }
  (α : skewMonoid_Mor T T') (α' : skewMonoid_Mor T' T'')
  : skewMonoid_Mor T T'' := tpair _ _ (skewMonoid_composition_laws α α').

Definition skewMonoid_Mor_equiv
  {T T' : skewMonoid_data } (α β : skewMonoid_Mor T T')
  : α = β (pr1 α = pr1 β).
Show proof.
  apply subtypeInjectivity; intro a.
  apply isaprop_skewMonoid_Mor_laws.

Definition precategory_skewMonoid_ob_mor : precategory_ob_mor
  := make_precategory_ob_mor skewMonoid (λ T T' : skewMonoid , skewMonoid_Mor T T').

Definition precategory_skewMonoid_data : precategory_data.
Show proof.
  exists (precategory_skewMonoid_ob_mor).
  exists (fun (T : skewMonoid) => skewMonoid_identity T).
  exact (fun (A B C : skewMonoid) => @skewMonoid_composition A B C ).

Lemma precategory_skewMonoid_axioms
  : is_precategory precategory_skewMonoid_data.
Show proof.
  repeat split; simpl; intros.
  - apply (invmap (skewMonoid_Mor_equiv _ _ )).
    apply id_left.
  - apply (invmap (skewMonoid_Mor_equiv _ _ )).
    apply id_right.
  - apply (invmap (skewMonoid_Mor_equiv _ _ )).
    apply assoc.
  - apply (invmap (skewMonoid_Mor_equiv _ _ )).
    apply assoc'.

Definition precategory_skewMonoid : precategory
  := tpair _ _ precategory_skewMonoid_axioms.

End Precategory_of_SkewMonoids.