Library UniMath.CategoryTheory.limits.graphs.kernels

Kernels defined in terms of limits

Contents

  • Definition coincides with the direct definition

Definition of kernels in terms of limits

Section def_kernels.

  Variable C : category.
  Let hs: has_homsets C := homset_property C.
  Variable Z : Zero C.

  Definition Kernel {a b : C} (f : Ca, b) := Equalizer C f (ZeroArrow Z a b).

Maps between Kernels as limits and direct definition.

  Lemma equiv_Kernel1_eq {a b : C} (f : Ca, b) (K : limits.kernels.Kernel (equiv_Zero2 Z) f) :
    KernelArrow K · f = KernelArrow K · ZeroArrow Z a b.
  Show proof.
    rewrite precomp_with_ZeroArrow. rewrite <- equiv_ZeroArrow. apply KernelCompZero.

  Lemma equiv_Kernel1_isEqualizer {a b : C} (f : Ca, b)
        (K : limits.kernels.Kernel (equiv_Zero2 Z) f) :
    isEqualizer C f (ZeroArrow Z a b) K (KernelArrow K) (equiv_Kernel1_eq f K).
  Show proof.
    use (make_isEqualizer _ ).
    intros e h' H'.
    use unique_exists.
    - use KernelIn.
      + exact h'.
      + rewrite precomp_with_ZeroArrow in H'.
        use (pathscomp0 _ (!(equiv_ZeroArrow e b Z))).
        exact H'.
    - cbn. use KernelCommutes.
    - intros y. apply hs.
    - intros y X. cbn in X.
      use limits.kernels.KernelInsEq. unfold KernelArrow.
      use (pathscomp0 X). apply pathsinv0.
      use limits.kernels.KernelCommutes.

  Definition equiv_Kernel1 {a b : C} (f : Ca, b) (K : limits.kernels.Kernel (equiv_Zero2 Z) f) :
    Kernel f.
  Show proof.
    use make_Equalizer.
    - exact K.
    - exact (KernelArrow K).
    - exact (equiv_Kernel1_eq f K).
    - exact (equiv_Kernel1_isEqualizer f K).


  Lemma equiv_Kernel2_eq {a b : C} (f : Ca, b) (K : Kernel f) :
    EqualizerArrow C K · f = limits.zero.ZeroArrow (equiv_Zero2 Z) (EqualizerObject C K) b.
  Show proof.
    rewrite (EqualizerArrowEq C K). rewrite equiv_ZeroArrow.
    rewrite precomp_with_ZeroArrow. apply idpath.

  Lemma equiv_Kernel2_isEqualizer {a b : C} (f : Ca, b) (K : Kernel f) :
    isKernel (equiv_Zero2 Z) (EqualizerArrow C K) f (equiv_Kernel2_eq f K).
  Show proof.
    use (make_isKernel).
    intros w h H.
    use unique_exists.
    - use EqualizerIn.
      + exact h.
      + rewrite H.
        rewrite precomp_with_ZeroArrow.
        apply equiv_ZeroArrow.
    - use EqualizerArrowComm.
    - intros y. apply hs.
    - intros y T. cbn in T.
      use EqualizerInUnique. exact T.

  Definition equiv_Kernel2 {a b : C} (f : Ca, b) (K : Kernel f) :
    limits.kernels.Kernel (equiv_Zero2 Z) f.
  Show proof.
    use make_Kernel.
    - exact (EqualizerObject C K).
    - exact (EqualizerArrow C K).
    - exact (equiv_Kernel2_eq f K).
    - exact (equiv_Kernel2_isEqualizer f K).

End def_kernels.