Library UniMath.Foundations.UnivalenceAxiom2
proofs that the statements of the axioms are propositions
Require Import UniMath.Foundations.PartD.
Lemma isaprop_univalenceStatement : isaprop univalenceStatement.
Show proof.
unfold univalenceStatement.
apply impred_isaprop; intro X;
apply impred_isaprop; intro Y.
apply isapropisweq.
apply impred_isaprop; intro X;
apply impred_isaprop; intro Y.
apply isapropisweq.
Lemma isaprop_funextemptyStatement : isaprop funextemptyStatement.
Show proof.
unfold funextemptyStatement.
apply impred_isaprop; intro X;
apply impred_isaprop; intro f;
apply impred_isaprop; intro g.
generalize g; clear g.
generalize f; clear f.
change (isaset (X → ∅)).
apply impred_isaset; intro x.
apply isasetempty.
apply impred_isaprop; intro X;
apply impred_isaprop; intro f;
apply impred_isaprop; intro g.
generalize g; clear g.
generalize f; clear f.
change (isaset (X → ∅)).
apply impred_isaset; intro x.
apply isasetempty.
Lemma isaprop_isweqtoforallpathsStatement : isaprop isweqtoforallpathsStatement.
Show proof.
unfold isweqtoforallpathsStatement.
apply impred_isaprop; intro T;
apply impred_isaprop; intro P;
apply impred_isaprop; intro f;
apply impred_isaprop; intro g.
apply isapropisweq.
apply impred_isaprop; intro T;
apply impred_isaprop; intro P;
apply impred_isaprop; intro f;
apply impred_isaprop; intro g.
apply isapropisweq.
Lemma isaprop_propositionalUnivalenceStatement : isaprop propositionalUnivalenceStatement.
Show proof.
unfold propositionalUnivalenceStatement.
apply impred_isaprop; intro P;
apply impred_isaprop; intro Q;
apply impred_isaprop; intro i;
apply impred_isaprop; intro j;
apply impred_isaprop; intros _;
apply impred_isaprop; intros _.
apply (isofhlevelweqb 1 (univalence P Q)).
fold isaprop.
apply isapropweqtoprop.
exact j.
apply impred_isaprop; intro P;
apply impred_isaprop; intro Q;
apply impred_isaprop; intro i;
apply impred_isaprop; intro j;
apply impred_isaprop; intros _;
apply impred_isaprop; intros _.
apply (isofhlevelweqb 1 (univalence P Q)).
fold isaprop.
apply isapropweqtoprop.
exact j.
Lemma isaprop_funcontrStatement : isaprop funcontrStatement.
Show proof.
unfold funcontrStatement.
apply impred_isaprop; intro X;
apply impred_isaprop; intro P;
apply impred_isaprop; intros _.
apply isapropiscontr.
apply impred_isaprop; intro X;
apply impred_isaprop; intro P;
apply impred_isaprop; intros _.
apply isapropiscontr.
Lemma isaprop_funextcontrStatement : isaprop funextcontrStatement.
Show proof.
unfold funextcontrStatement.
apply impred_isaprop; intro T;
apply impred_isaprop; intro P;
apply impred_isaprop; intro g.
apply isapropiscontr.
apply impred_isaprop; intro T;
apply impred_isaprop; intro P;
apply impred_isaprop; intro g.
apply isapropiscontr.