Library UniMath.MoreFoundations.DoubleNegation
When proving a negation, we may undo a double negation.
It's not false that a type is decidable.
Lemma dneg_decidable (P:Type) : ¬¬ decidable P.
Show proof.
Show proof.
intros ndec.
unfold decidable in ndec.
assert (q := fromnegcoprod ndec); clear ndec.
contradicts (pr1 q) (pr2 q).
unfold decidable in ndec.
assert (q := fromnegcoprod ndec); clear ndec.
contradicts (pr1 q) (pr2 q).
When proving a negation, we may assume a type is decidable.
Lemma wma_decidable {X:Type} (P:Type) : (decidable P -> ¬ X) -> ¬ X.
Show proof.
Local Open Scope logic.
Show proof.
Local Open Scope logic.
Compare with negforall_to_existsneg, which uses LEM instead.