Library UniMath.MoreFoundations.PathsOver

This file contains the definition of paths over a path, together with some facts about them developed by Marc Bezem and Ulrik Buchholtz.

Paths over paths in families of types


Local Set Implicit Arguments.
Local Unset Strict Implicit.

Declare Scope pathsover.
Delimit Scope pathsover with pathsover.
Local Open Scope pathsover.

A path in a family of types "over" a path in the base
Definition PathOver {X:Type}
           {x x':X} (p:x=x')
           {Y : X -> Type} (y : Y x) (y' : Y x') : Type.
Show proof.
  induction p. exact (y=y').

Paths-over versus path pairs
Definition PathOverToPathPair {X:Type} {x x':X} (p:x=x') {Y : X -> Type} (y : Y x) (y' : Y x') :
  PathOver p y y' PathPair (x,,y) (x',,y').
Show proof.
  intros q. induction p. exists (idpath x). cbn. exact q.

Definition apd {X:Type} {Y : X -> Type} (s : x, Y x) {x x':X} (p : x = x') :
  PathOver p (s x) (s x').
Show proof.
  now induction p.

Definition PathOverToTotalPath {X:Type}
           {x x':X} (p:x=x')
           {Y : X -> Type} (y : Y x) (y' : Y x') :
  PathOver p y y' (x,,y) = (x',,y').
Show proof.
  intros q.
  exact (invmap (total2_paths_equiv Y (x,, y) (x',, y')) (PathOverToPathPair q)).

Lemma PathOverUniqueness {X:Type} {x x':X} (p:x=x') {Y : X -> Type} (y : Y x) :
  ∃! (y' : Y x'), PathOver p y y'.
Show proof.
  induction p. apply iscontrcoconusfromt.

Definition stdPathOver {X:Type} {x x':X} (p:x=x') {Y : X -> Type} (y : Y x)
  : PathOver p y (transportf Y p y).
Show proof.
  now induction p.

Definition stdPathOver' {X:Type} {x x':X} (p:x=x') {Y : X -> Type} (y' : Y x')
  : PathOver p (transportb Y p y') y'.
Show proof.
  now induction p.

Definition identityPathOver {X:Type} {x:X} {Y : X -> Type} (y : Y x)
  : PathOver (idpath x) y y
  := idpath y.

Definition pathOverIdpath {X:Type} {x:X} {Y : X -> Type} (y y' : Y x)
  : PathOver (idpath x) y y' = (y = y')
  := idpath _.

Definition toPathOverIdpath {X:Type} {x:X} {Y : X -> Type} (y y' : Y x)
  : y = y' -> PathOver (idpath x) y y'
  := idfun _.

Local Notation "'∇' q" := (toPathOverIdpath q) (at level 10) : pathsover.

Definition fromPathOverIdpath {X:Type} {x:X} {Y : X -> Type} (y y' : Y x) : PathOver (idpath x) y y' -> y = y'
  := idfun _.

Local Notation "'Δ' q" := (fromPathOverIdpath q) (at level 10) : pathsover.

Definition inductionPathOver {X:Type} {x:X} {Y : X -> Type} (y : Y x)
           (T : x' (p : x = x') (y' : Y x'), PathOver p y y' Type)
           (t : T x (idpath x) y (identityPathOver y)) :
   x' (y' : Y x') (p : x = x') (q : PathOver p y y'), T x' p y' q.
Show proof.
  intros. induction p, q. exact t.

Definition transportPathOver {X:Type} {x x':X} {Y : X -> Type} (y : Y x) (y' : Y x') (p:x=x')
           (q : PathOver p y y')
           (T : (a:X) (b:Y a), Type) : T x y T x' y'.
Show proof.
  now induction p, q.

Definition transportPathOver' {X:Type} {x x':X} (p:x=x') {Y : X -> Type} (y : Y x) (y' : Y x')
           (q : PathOver p y y')
           (T : (a:X) (b:Y a), Type) : T x' y' T x y.
Show proof.
  now induction p, q.

Definition composePathOver {X:Type}
           {x x' x'':X} {p:x=x'} {p':x'=x''}
           {Y : X -> Type} {y : Y x} {y' : Y x'} {y'' : Y x''}
  : PathOver p y y' PathOver p' y' y'' PathOver (p @ p') y y''.
Show proof.
  induction p, p'. exact pathscomp0.

Local Notation "x * y" := (composePathOver x y) : pathsover.

Definition composePathOverPath {X:Type}
           {x x':X} {p:x=x'}
           {Y : X -> Type} {y : Y x} {y' y'' : Y x'}
  : PathOver p y y' y' = y'' PathOver p y y''.
Show proof.
  intros q e. now induction e.

Local Notation "q ⟥ e" := (composePathOverPath q e) (at level 56, left associativity) : pathsover.

Definition composePathOverIdpath {X:Type}
           {x x':X} {p:x=x'}
           {Y : X -> Type} {y : Y x} {y': Y x'}
           (q : PathOver p y y')
  : q idpath y' = q.
Show proof.
  reflexivity.

Definition composePathPathOver {X:Type}
           {x' x'':X} {p:x'=x''}
           {Y : X -> Type} {y y': Y x'} {y'' : Y x''}
  : y = y' PathOver p y' y'' PathOver p y y''.
Show proof.
  intros e q. now induction e.

Local Notation "e ⟤ q" := (composePathPathOver e q) (at level 56, left associativity) : pathsover.

Lemma composeIdpathPathOver {X:Type}
      {x' x'':X} {p:x'=x''}
      {Y : X -> Type} {y': Y x'} {y'' : Y x''}
      (q : PathOver p y' y'')
  : idpath y' q = q.
Show proof.
  reflexivity.

Lemma composePathPathOverRotate {X:Type}
      {x' x'':X} {p:x'=x''}
      {Y : X -> Type} {y y': Y x'} (q : y = y') {y'' : Y x''}
      (r : PathOver p y' y'') (s : PathOver p y y'')
  : q r = s <-> r = (!q) s.
Show proof.
  induction q. simpl. apply isrefl_logeq.

Lemma composePathOverPathRotate {X:Type}
      {x x':X} {p:x=x'}
      {Y : X -> Type} {y : Y x} {y' y'': Y x'}
      (r : PathOver p y y') (q : y' = y'') (s : PathOver p y y'')
  : r q = s <-> r = s (!q).
Show proof.
  induction q. simpl. apply isrefl_logeq.

Lemma composePathPathOverPath {X:Type}
      {x x':X} {p:x=x'}
      {Y : X -> Type} {y y' : Y x} {y'' y''': Y x'} (q : y = y') (r : PathOver p y' y'') (s : y'' = y''')
  : q (r s) = (q r) s.
Show proof.
  now induction q.

Definition composePathOverLeftUnit {X:Type}
           {x x':X} (p:x=x')
           {Y : X -> Type} (y : Y x) (y' : Y x') (q:PathOver p y y') :
  identityPathOver y * q = q.
Show proof.
  now induction p.

Definition composePathOverRightUnit {X:Type}
           {x x':X} (p:x=x')
           {Y : X -> Type} (y : Y x) (y' : Y x') (q:PathOver p y y') :
  q * identityPathOver y' = transportb (λ p, PathOver p y y') (pathscomp0rid _) q.
Show proof.
  now induction p, q.

Definition assocPathOver {X:Type}
           {x x' x'' x''':X} {p:x=x'} {p':x'=x''} {p'':x''=x'''}
           {Y : X -> Type} {y : Y x} {y' : Y x'} {y'' : Y x''} {y''' : Y x'''}
           (q : PathOver p y y') (q' : PathOver p' y' y'') (q'' : PathOver p'' y'' y''') :
  transportf (λ ppp, PathOver ppp y y''') (path_assoc p p' p'') (q * (q' * q''))
  =
  (q * q') * q''.
Show proof.
  induction p, p', p'', q, q', q''. reflexivity.

Definition inversePathOver {X:Type}
           {x x':X} {p:x=x'}
           {Y : X -> Type} {y : Y x} {y' : Y x'}
  : PathOver p y y' PathOver (!p) y' y.
Show proof.
  intros q. induction p, q. reflexivity.

Definition inversePathOver' {X:Type}
           {x x':X} {p:x'=x}
           {Y : X -> Type} {y : Y x} {y' : Y x'}
  : PathOver (!p) y y' PathOver p y' y.
Show proof.
  intros q. induction p, q. reflexivity.

Definition inverseInversePathOver1 {X:Type}
           {x x':X} {p:x=x'}
           {Y : X -> Type} {y : Y x} {y' : Y x'}
           (s : PathOver p y y')
  : inversePathOver' (inversePathOver s) = s.
Show proof.
  induction p, s. reflexivity.

Definition inverseInversePathOver2 {X:Type}
           {x x':X} {p:x'=x}
           {Y : X -> Type} {y : Y x} {y' : Y x'}
           (s : PathOver (!p) y y')
  : inversePathOver (inversePathOver' s) = s.
Show proof.
  induction p, s. reflexivity.

Local Notation "q '^-1'" := (inversePathOver q) : pathsover.

Definition inversePathOverIdpath {X:Type} {x:X} {Y : X -> Type} (y y' : Y x) (e : y = y') :
  inversePathOver ( e) = (!e).
Show proof.
  reflexivity.

Definition inversePathOverIdpath' {X:Type} {x:X} {Y : X -> Type} (y y' : Y x) (e : y = y') :
  inversePathOver' ( e : PathOver (! idpath x) y y') = (!e).
Show proof.
  reflexivity.

Definition inverseInversePathOver {X:Type} {Y : X -> Type} {x:X} {y : Y x} :
   {x':X} {y' : Y x'} {p:x=x'} (q : PathOver p y y'),
  transportf (λ pp, PathOver pp y y') (pathsinv0inv0 p) (q^-1^-1) = q.
Show proof.
  now use inductionPathOver.

Definition inversePathOverWeq {X:Type}
           {x x':X} {p:x=x'}
           {Y : X -> Type} {y : Y x} {y' : Y x'}
  : PathOver p y y' PathOver (!p) y' y.
Show proof.
  exists inversePathOver. intros s. use tpair.
  - exists (inversePathOver' s). apply inverseInversePathOver2.
  - cbn. induction p. intros [t []]. induction t. reflexivity.

Lemma inversePathOverWeq' {X:Type}
           {x x':X} {p:x'=x}
           {Y : X -> Type} {y : Y x} {y' : Y x'}
  : PathOver (!p) y y' PathOver p y' y.
Show proof.
  exists inversePathOver'. intros s. use tpair.
  - exists (inversePathOver s). apply inverseInversePathOver1.
  - cbn. induction p. intros [t []]. induction t. reflexivity.

Paths-over in a constant family

Definition PathOverConstant_id {X:Type} {x x':X} (p:x=x') {Z : Type} (z : Z) (z' : Z)
  : (z = z') = (PathOver p z z').
Show proof.
  now induction p.

Definition PathOverConstant_map1 {X:Type} {x x':X} (p:x=x') {Z : Type} {z z' : Z}
  : z = z' -> PathOver p z z'.
Show proof.
  now induction p.

Definition PathOverConstant_map1_eq1 {X:Type}
           {x x':X} (p:x=x')
           {Z : Type} {z z' z'' : Z}
           (q: z = z') (r : z' = z'')
  : PathOverConstant_map1 p (q @ r) = PathOverConstant_map1 p q r.
Show proof.
  now induction r, q.

Definition PathOverConstant_map1_eq2 {X:Type}
           {x x':X} (p:x=x')
           {Z : Type} {z z' z'' : Z}
           (q: z = z') (r : z' = z'')
  : PathOverConstant_map1 p (q @ r) = q PathOverConstant_map1 p r.
Show proof.
  now induction r, q.

Definition PathOverConstant_map2 {X:Type}
           {x x':X} {p:x=x'}
           {Z : Type} {z z' : Z}
  : PathOver p z z' -> z = z'.
Show proof.
  now induction p.

Definition PathOverConstant_map2_apd {X:Type}
           {x x':X} {p:x=x'}
           {Z : Type} {f : X -> Z}
  : PathOverConstant_map2 (apd f p) = maponpaths f p.
Show proof.
  now induction p.

Definition PathOverConstant_map2_eq1 {X:Type}
           {x x':X} {p:x=x'}
           {Z : Type} {z z' z'' : Z}
           (q: PathOver p z z') (r : z' = z'')
  : PathOverConstant_map2 (q r) = PathOverConstant_map2 q @ r.
Show proof.
  induction r. change (q idpath z') with q. apply pathsinv0, pathscomp0rid.

Definition PathOverConstant_map2_eq2 {X:Type}
           {x x':X} (p:x=x')
           {Z : Type} {z z' z'' : Z}
           (r : z = z') (q: PathOver p z' z'')
  : PathOverConstant_map2 (r q) = r @ PathOverConstant_map2 q.
Show proof.
  now induction r.

Lemma PathOverConstant_map1_map2 {X:Type}
      {x x':X} (p:x=x')
      {Z : Type} {z z' : Z} (q : z = z')
  : PathOverConstant_map2 (PathOverConstant_map1 p q) = q.
Show proof.
  now induction p.

lemmas

Lemma Lemma023 (A:Type) (B:A->Type) (a1 a2 a3:A)
      (b1:B a1) (b2:B a2) (b3:B a3)
      (p1:a1=a2) (p2:a2=a3)
      (q:PathOver p1 b1 b2) :
  isweq (composePathOver q : PathOver p2 b2 b3 -> PathOver (p1@p2) b1 b3).
Show proof.
  induction p1, p2, q. apply idisweq.

Definition composePathOver_weq (A:Type) (a1 a2 a3:A) (B:A->Type)
      (b1:B a1) (b2:B a2) (b3:B a3)
      (p1:a1=a2) (p2:a2=a3)
      (q:PathOver p1 b1 b2)
  : PathOver p2 b2 b3 PathOver (p1@p2) b1 b3
  := make_weq (composePathOver q) (Lemma023 _).

Lemma Lemma0_2_4 (A:Type) (B:A->Type) (a1 a2:A)
      (b1:B a1) (b2:B a2) (p q:a1=a2) (α : p=q) :
  isweq ((transportf (λ pp, PathOver pp b1 b2) α) : PathOver p b1 b2 -> PathOver q b1 b2).
Show proof.
  induction α. apply idisweq.

Definition cp
           (A:Type) (a1 a2:A) (p q:a1=a2) (α : p=q)
           (B:A->Type) (b1:B a1) (b2:B a2) :
  PathOver p b1 b2 PathOver q b1 b2
  := make_weq (transportf (λ pq, PathOver pq b1 b2) α) (Lemma0_2_4 α).

Arguments cp {_ _ _ _ _} _ {_ _ _}.

Definition composePathOverPath_compute {X:Type}
           {x x':X} {p:x=x'}
           {Y : X -> Type} {y : Y x} {y' y'' : Y x'}
           (q : PathOver p y y') (e : y' = y'') :
  q e = cp (pathscomp0rid p) (q * e).
Show proof.
  now induction p, q, e.

Definition composePathPathOver_compute {X:Type}
           {x' x'':X} {p:x'=x''}
           {Y : X -> Type} {y y': Y x'} {y'' : Y x''}
           (e : y = y') (q : PathOver p y' y'') :
  e q = e * q.
Show proof.
  now induction p.

Definition cp_idpath
           (A:Type) (a1 a2:A) (p:a1=a2)
           (B:A->Type) (b1:B a1) (b2:B a2) (u:PathOver p b1 b2) :
  cp (idpath p) u = u.
Show proof.
  reflexivity.

Definition cp_left
           (A:Type) (a2 a3:A) (p p':a2=a3) (α:p=p')
           (B:A->Type) (b1 b2:B a2) (b3:B a3)
           (r:PathOver (idpath a2) b1 b2)
           (q:PathOver p b2 b3) :
  r * cp α q = cp α (r*q).
Show proof.
  now induction r, α.

Definition cp_right
           (A:Type) (a1 a2:A) (p p':a1=a2) (α:p=p')
           (B:A->Type) (b1:B a1) (b2 b3:B a2)
           (q:PathOver p b1 b2)
           (r:PathOver (idpath a2) b2 b3) :
  cp α q * r = cp (maponpaths (λ p, p @ idpath a2) α) (q*r).
Show proof.
  now induction r, α.

Definition cp_in_family
           (A:Type) (a1 a2:A)
           (T:Type) (t0 t1:T) (v:t0=t1) (p:T->a1=a2)
           (B:A->Type) (b1:B a1) (b2:B a2) (s : t, PathOver (p t) b1 b2) :
  cp (maponpaths p v) (s t0) = s t1.
Show proof.
  now induction v.

Definition cp_irrelevance
           (A:Type) (B:A->Type) (a1 a2:A) (b1:B a1) (b2:B a2) (p q:a1=a2) (α β: p=q) :
  isofhlevel 3 A -> cp (b1:=b1) (b2:=b2) α = cp (b1:=b1) (b2:=b2) β.
Show proof.
  intros ih. apply (maponpaths (λ α, cp α)). apply ih.

Local Goal (A:Type) (B:A->Type) (a1 a2:A) (b1:B a1) (b2:B a2) (p q:a1=a2) (α : p=q)
      (r : PathOver p b1 b2) (s : PathOver q b1 b2),
  (cp α r = s) = (PathOver (Y := λ pq, PathOver pq _ _) α r s).
Show proof.
  intros. induction α, p. reflexivity.

Definition inverse_cp_p
           (A:Type) (B:A->Type) (a1 a2:A) (b1:B a1) (b2:B a2)
           (p q:a1=a2) (α : p=q) (t : PathOver p b1 b2) :
  cp (! α) (cp α t) = t.
Show proof.
  now induction α.

Definition inverse_cp_p'
           (A:Type) (B:A->Type) (a1 a2:A) (b1:B a1) (b2:B a2)
           (p q:a1=a2) (α : p=q)
           (t : PathOver p b1 b2) (u : PathOver q b1 b2) :
  PathOver (Y := λ pq, PathOver pq _ _) α t u -> PathOver (Y := λ pq, PathOver pq _ _) (!α) u t.
Show proof.
  exact inversePathOver.

Definition inverse_cp_p''
           (A:Type) (B:A->Type) (a1 a2:A) (b1:B a1) (b2:B a2)
           (p q:a1=a2) (α : p=q)
           (t : PathOver p b1 b2) (u : PathOver q b1 b2) :
  PathOver (Y := λ pq, PathOver pq _ _) α t u -> PathOver (Y := λ pq, PathOver pq _ _) (!α) u t.
Show proof.
  intros k. induction α, p, k. reflexivity.

Lemma inverse_cp_p_compare
           (A:Type) (B:A->Type) (a1 a2:A) (b1:B a1) (b2:B a2)
           (p q:a1=a2) (α : p=q)
           (t : PathOver p b1 b2) (u : PathOver q b1 b2)
           (k : PathOver α t u) :
  inverse_cp_p' k = inverse_cp_p'' k.
Show proof.
  induction α,p. reflexivity.

Definition cp_inverse_cp
           (A:Type) (B:A->Type) (a1 a2:A) (b1:B a1) (b2:B a2)
           (p q:a1=a2) (α : p=q) (t : PathOver q b1 b2) :
  cp α (cp (! α) t) = t.
Show proof.
  now induction α.

Definition composePathOverRightInverse {X:Type} {x x':X} {Y : X -> Type}
           {y : Y x} {y' : Y x'} {p:x=x'} (q : PathOver p y y') :
  q * q^-1 = cp (!pathsinv0r p) (identityPathOver y).
Show proof.
  now induction p, q.

Definition composePathOverLeftInverse {X:Type} {x x':X} {Y : X -> Type}
           {y : Y x} {y' : Y x'} {p:x=x'} (q : PathOver p y y') :
  q^-1 * q = cp (!pathsinv0l p) (identityPathOver y').
Show proof.
  now induction p, q.

Lemma cp_pathscomp0
      (A:Type) (B:A->Type) (a1 a2:A)
      (b1:B a1) (b2:B a2) (p q r:a1=a2) (α : p=q) (β : q=r)
      (s : PathOver p b1 b2) :
  cp (b1:=b1) (b2:=b2) (α @ β) s = cp β (cp α s).
Show proof.
  now induction α.

Definition apstar
           (A:Type) (a1 a2 a3:A) (p p':a1=a2) (q q':a2=a3) :
  p=p' -> q=q' -> p @ q = p' @ q'.
Show proof.
  intros; apply maponpaths_12; assumption.

Definition cp_apstar
      (A:Type) (B:A->Type) (a1 a2 a3:A)
      (p p':a1=a2) (q q':a2=a3) (α : p=p') (β : q=q')
      (b1:B a1) (b2:B a2) (b3:B a3)
      (pp : PathOver p b1 b2) (qq : PathOver q b2 b3) :
  cp (apstar α β) (pp * qq) = cp α pp * cp β qq.
Show proof.
  now induction p, α, β.

Definition cp_apstar'
      (A:Type) (B:A->Type) (a1 a2:A)
      (p:a2=a1) (p':a1=a2) (α : !p=p')
      (b1:B a1) (b2:B a2)
      (pp : PathOver (Y:=B) p b2 b1) :
  cp α (pp^-1) = inversePathOver' (cp (invrot α) pp).
Show proof.
  now induction α, p.

Lemma pathOverEquations {X Y:Type} {f g : X -> Y} {x x' : X} (e : f x = g x) (e' : f x' = g x') (p : x = x')
  : PathOver (Y := λ x, f x = g x) p e e' = ( e @ maponpaths g p = maponpaths f p @ e' ).
Show proof.
  induction p. simpl. apply (maponpaths (λ r, r = e')). apply pathsinv0, pathscomp0rid.

Lemma pathOverEquations1 {X:Type} {f : X -> X} {x x' : X} (e : f x = x) (e' : f x' = x') (p : x = x')
  : PathOver (Y := λ x, f x = x) p e e' = ( e @ p = maponpaths f p @ e' ).
Show proof.
  induction p. simpl. apply (maponpaths (λ r, r = e')). apply pathsinv0, pathscomp0rid.

Definition mapPathOver {X:Type} {x x':X} (p:x=x')
           {Y Y': X -> Type} (f : x, Y x -> Y' x)
           (y : Y x) (y' : Y x')
  : PathOver p y y' -> PathOver p (f x y) (f x' y').
Show proof.
  induction p. simpl. intros []. reflexivity.

Definition binopPathOver {X:Type}
           {x x':X} (p:x=x')
           {Y Z W : X -> Type} (f : x, Y x -> Z x -> W x)
           (y : Y x) (y' : Y x')
           (z : Z x) (z' : Z x')
  : PathOver p y y' -> PathOver p z z' -> PathOver p (f x y z) (f x' y' z').
Show proof.
  induction p. simpl. intros [] []. reflexivity.

Local Unset Implicit Arguments.

Definition pullBackFamily {X X':Type} (g : X -> X') (Y : X' -> Type)
  := λ x, Y (g x).

Definition pullBackSection {X X':Type} (g : X -> X') {Y : X' -> Type} (f : x', Y x')
  := λ x, f (g x).

Definition pullBackPointOver {X X':Type} (g : X -> X')
           {x:X} {x':X'} (r : g x = x')
           {Y : X' -> Type} (y : Y x')
  : (pullBackFamily g Y) (x).
Show proof.
  induction r. exact y.

Definition pullBackPointOverWithSection {X X':Type} (g : X -> X')
           {x:X} {x':X'} (r : g x = x') {Y : X' -> Type} (f : x', Y x')
  : pullBackPointOver g r (f x') = pullBackSection g f x.
Show proof.
   induction r. reflexivity.

Definition pullBackPointOverWithSection'
           {X X':Type} (g : X -> X')
           {x:X} {x':X'} (r : g x = x')
           {Y : X' -> Type} {y : Y x'}
           {f : x', Y x'} (k : y = f x')
  : pullBackPointOver g r y = pullBackSection g f x.
Show proof.
  induction (!k), r. reflexivity.

Definition pullBackPathOverPoint {X X':Type} (g : X -> X')
           {x:X} {x':X'} (r : g x = x')
           {Y : X' -> Type} {y y' : Y x'} (t : y = y')
  : pullBackPointOver g r y = pullBackPointOver g r y'.
Show proof.
  apply maponpaths; assumption.

Definition pullBackPathOver {X X':Type} (g : X -> X')
           {x1 x2:X} {x1' x2':X'} {r1 : g x1 = x1'} {r2 : g x2 = x2'}
           {s : x1 = x2} {s' : x1' = x2'}
           (r : r1 @ s' = maponpaths g s @ r2)
           {Y : X' -> Type}
           {y1 : Y x1'} {y2 : Y x2'}
           (q : PathOver s' y1 y2)
  : PathOver s (pullBackPointOver g r1 y1) (pullBackPointOver g r2 y2).
Show proof.
  induction r1, r2. simpl in r; simpl.
  assert (k' : s' = maponpaths g s). { refine (r @ pathscomp0rid _). } clear r.
  induction (!k'); clear k'. induction s. simpl in q. simpl. exact q.

Definition pullBackPathOverPath {X X':Type} (g : X -> X')
           {x1 x2:X} {x1' x2':X'} {r1 : g x1 = x1'} {r2 : g x2 = x2'}
           {s : x1 = x2} {s' : x1' = x2'}
           (r : r1 @ s' = maponpaths g s @ r2)
           {Y : X' -> Type}
           (y1 : Y x1') (y2 y3 : Y x2')
           (q : PathOver s' y1 y2)
           (t : y2 = y3)
  : pullBackPathOver g r (q t) = pullBackPathOver g r q pullBackPathOverPoint g r2 t.
Show proof.
  induction t, r1, r2. reflexivity.

Definition pullBackPathPathOver {X X':Type} (g : X -> X')
           {x1 x2:X} {x1' x2':X'} (r1 : g x1 = x1') (r2 : g x2 = x2')
           (s : x1 = x2) (s' : x1' = x2')
           (r : r1 @ s' = maponpaths g s @ r2)
           {Y : X' -> Type}
           (y0 y1 : Y x1') (y2 : Y x2')
           (q : PathOver s' y1 y2)
           (t : y0 = y1)
  : pullBackPathOver g r (t q) = pullBackPathOverPoint g r1 t pullBackPathOver g r q.
Show proof.
  induction t, r1, r2. reflexivity.

Module PathsOverNotations.
Notation "'Δ' q" := (fromPathOverIdpath q) (at level 10) : pathsover.
Notation "'∇' q" := (toPathOverIdpath q) (at level 10) : pathsover.
Notation "x * y" := (composePathOver x y) : pathsover.
Notation "q ⟥ e" := (composePathOverPath q e) (at level 56, left associativity) : pathsover.
Notation "e ⟤ q" := (composePathPathOver e q) (at level 56, left associativity) : pathsover.
Notation "q '^-1'" := (inversePathOver q) : pathsover.
End PathsOverNotations.