Library UniMath.Bicategories.ComprehensionCat.Biequivalence.LocalProperty
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Import UniMath.CategoryTheory.Equivalences.CompositesAndInverses.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Univalence.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiber.
Require Import UniMath.CategoryTheory.DisplayedCats.Fibrations.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.FiberCod.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.CodFunctor.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Morphisms.Adjunctions.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispAdjunctions.
Require Import UniMath.Bicategories.DisplayedBicats.DispBiequivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispBuilders.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.DispTransformation.
Require Import UniMath.Bicategories.DisplayedBicats.DispModification.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.CompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.ComprehensionEso.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Unit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Biequiv.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.LocalProperties.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.DFLCompCatWithProp.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.CatWithProp.
Local Open Scope cat.
Local Open Scope comp_cat.
Section LocalPropertyBiequiv.
Context (P : local_property).
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Import UniMath.CategoryTheory.Equivalences.CompositesAndInverses.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Univalence.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiber.
Require Import UniMath.CategoryTheory.DisplayedCats.Fibrations.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.FiberCod.
Require Import UniMath.CategoryTheory.DisplayedCats.Codomain.CodFunctor.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Morphisms.Adjunctions.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.StructuredCategories.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispAdjunctions.
Require Import UniMath.Bicategories.DisplayedBicats.DispBiequivalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispBuilders.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.DisplayedBicats.DispTransformation.
Require Import UniMath.Bicategories.DisplayedBicats.DispModification.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.Bicategories.PseudoFunctors.Biequivalence.
Require Import UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.CompCatNotations.
Require Import UniMath.Bicategories.ComprehensionCat.DFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.ComprehensionEso.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Unit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit.
Require Import UniMath.Bicategories.ComprehensionCat.Biequivalence.Biequiv.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.LocalProperties.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.DFLCompCatWithProp.
Require Import UniMath.Bicategories.ComprehensionCat.LocalProperty.CatWithProp.
Local Open Scope cat.
Local Open Scope comp_cat.
Section LocalPropertyBiequiv.
Context (P : local_property).
Definition local_property_in_cod
(C : univ_cat_with_finlim)
(H : P C)
: fiberwise_cat_property P (finlim_to_dfl_comp_cat C).
Show proof.
Proposition local_property_in_cod_functor
{C₁ C₂ : univ_cat_with_finlim}
{F : functor_finlim C₁ C₂}
{H₁ : P C₁}
{H₂ : P C₂}
(HF : cat_property_functor P H₁ H₂ F)
: fiberwise_cat_property_functor
(finlim_to_dfl_comp_cat_functor F)
(local_property_in_cod _ H₁)
(local_property_in_cod _ H₂).
Show proof.
Definition finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
: disp_psfunctor
(disp_bicat_of_univ_cat_with_cat_property P)
(disp_bicat_of_cat_property_dfl_full_comp_cat P)
finlim_biequiv_dfl_comp_cat_psfunctor.
Show proof.
(C : univ_cat_with_finlim)
(H : P C)
: fiberwise_cat_property P (finlim_to_dfl_comp_cat C).
Show proof.
use make_fiberwise_cat_property.
- intro Γ.
use (cat_property_ob_adj_equiv_f' P _ _ (local_property_slice P C Γ H)).
+ apply functor_identity.
+ apply identity_functor_is_adj_equivalence.
- intros Γ₁ Γ₂ s ; cbn.
use (cat_property_functor_nat_z_iso_adj_equiv_f'
P
_ _
_ _
_
(local_property_pb P H s)).
+ apply functor_identity.
+ apply functor_identity.
+ apply identity_functor_is_adj_equivalence.
+ apply identity_functor_is_adj_equivalence.
+ exact (nat_z_iso_id (slice_univ_cat_pb_finlim s)).
- intro Γ.
use (cat_property_ob_adj_equiv_f' P _ _ (local_property_slice P C Γ H)).
+ apply functor_identity.
+ apply identity_functor_is_adj_equivalence.
- intros Γ₁ Γ₂ s ; cbn.
use (cat_property_functor_nat_z_iso_adj_equiv_f'
P
_ _
_ _
_
(local_property_pb P H s)).
+ apply functor_identity.
+ apply functor_identity.
+ apply identity_functor_is_adj_equivalence.
+ apply identity_functor_is_adj_equivalence.
+ exact (nat_z_iso_id (slice_univ_cat_pb_finlim s)).
Proposition local_property_in_cod_functor
{C₁ C₂ : univ_cat_with_finlim}
{F : functor_finlim C₁ C₂}
{H₁ : P C₁}
{H₂ : P C₂}
(HF : cat_property_functor P H₁ H₂ F)
: fiberwise_cat_property_functor
(finlim_to_dfl_comp_cat_functor F)
(local_property_in_cod _ H₁)
(local_property_in_cod _ H₂).
Show proof.
intro Γ.
use (cat_property_functor_nat_z_iso_adj_equiv_f'
P
_ _
_ _
_
(local_property_fiber_functor P _ _ _ HF Γ)).
- apply functor_identity.
- apply functor_identity.
- apply identity_functor_is_adj_equivalence.
- apply identity_functor_is_adj_equivalence.
- exact (nat_z_iso_id (slice_univ_cat_fiber F Γ)).
use (cat_property_functor_nat_z_iso_adj_equiv_f'
P
_ _
_ _
_
(local_property_fiber_functor P _ _ _ HF Γ)).
- apply functor_identity.
- apply functor_identity.
- apply identity_functor_is_adj_equivalence.
- apply identity_functor_is_adj_equivalence.
- exact (nat_z_iso_id (slice_univ_cat_fiber F Γ)).
Definition finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
: disp_psfunctor
(disp_bicat_of_univ_cat_with_cat_property P)
(disp_bicat_of_cat_property_dfl_full_comp_cat P)
finlim_biequiv_dfl_comp_cat_psfunctor.
Show proof.
use make_disp_psfunctor_contr.
- apply disp_2cells_iscontr_disp_bicat_of_cat_property_dfl_full_comp_cat.
- exact (λ C H, local_property_in_cod C (pr1 H) ,, tt).
- exact (λ _ _ _ _ _ HF, tt ,, local_property_in_cod_functor (pr2 HF)).
- apply disp_2cells_iscontr_disp_bicat_of_cat_property_dfl_full_comp_cat.
- exact (λ C H, local_property_in_cod C (pr1 H) ,, tt).
- exact (λ _ _ _ _ _ HF, tt ,, local_property_in_cod_functor (pr2 HF)).
Definition local_property_in_dfl_comp_cat
(C : dfl_full_comp_cat)
(H : fiberwise_cat_property P C)
: P (dfl_full_comp_cat_to_finlim C).
Show proof.
Definition local_property_in_dfl_comp_cat_functor
{C₁ C₂ : dfl_full_comp_cat}
{F : dfl_full_comp_cat_functor C₁ C₂}
{H₁ : fiberwise_cat_property P C₁}
{H₂ : fiberwise_cat_property P C₂}
(HF : fiberwise_cat_property_functor F H₁ H₂)
: cat_property_functor
P
(local_property_in_dfl_comp_cat C₁ H₁)
(local_property_in_dfl_comp_cat C₂ H₂)
(dfl_functor_comp_cat_to_finlim_functor F).
Show proof.
Definition dfl_comp_cat_to_finlim_disp_psfunctor_local_property
: disp_psfunctor
(disp_bicat_of_cat_property_dfl_full_comp_cat P)
(disp_bicat_of_univ_cat_with_cat_property P)
dfl_comp_cat_to_finlim_psfunctor.
Show proof.
(C : dfl_full_comp_cat)
(H : fiberwise_cat_property P C)
: P (dfl_full_comp_cat_to_finlim C).
Show proof.
Definition local_property_in_dfl_comp_cat_functor
{C₁ C₂ : dfl_full_comp_cat}
{F : dfl_full_comp_cat_functor C₁ C₂}
{H₁ : fiberwise_cat_property P C₁}
{H₂ : fiberwise_cat_property P C₂}
(HF : fiberwise_cat_property_functor F H₁ H₂)
: cat_property_functor
P
(local_property_in_dfl_comp_cat C₁ H₁)
(local_property_in_dfl_comp_cat C₂ H₂)
(dfl_functor_comp_cat_to_finlim_functor F).
Show proof.
refine (cat_property_functor_nat_z_iso_adj_equiv_f'
P
_ _
_ _
_
(HF [])).
- refine (comp_adj_equivalence_of_cats _ _).
+ apply dfl_full_comp_cat_adjequiv_empty.
+ apply cod_fib_terminal.
- pose (T := make_Terminal _ (comp_cat_functor_terminal F [] (pr2 []))).
refine (comp_adj_equivalence_of_cats _ _).
+ exact (dfl_full_comp_cat_adjequiv_terminal C₂ T).
+ exact (cod_fib_terminal T).
- apply (dfl_functor_nat_z_iso F).
P
_ _
_ _
_
(HF [])).
- refine (comp_adj_equivalence_of_cats _ _).
+ apply dfl_full_comp_cat_adjequiv_empty.
+ apply cod_fib_terminal.
- pose (T := make_Terminal _ (comp_cat_functor_terminal F [] (pr2 []))).
refine (comp_adj_equivalence_of_cats _ _).
+ exact (dfl_full_comp_cat_adjequiv_terminal C₂ T).
+ exact (cod_fib_terminal T).
- apply (dfl_functor_nat_z_iso F).
Definition dfl_comp_cat_to_finlim_disp_psfunctor_local_property
: disp_psfunctor
(disp_bicat_of_cat_property_dfl_full_comp_cat P)
(disp_bicat_of_univ_cat_with_cat_property P)
dfl_comp_cat_to_finlim_psfunctor.
Show proof.
use make_disp_psfunctor_contr.
- apply disp_2cells_iscontr_disp_bicat_of_univ_cat_with_cat_property.
- exact (λ C H, local_property_in_dfl_comp_cat C (pr1 H) ,, tt).
- refine (λ _ _ _ _ _ HF, tt ,, local_property_in_dfl_comp_cat_functor _).
exact (pr2 HF).
- apply disp_2cells_iscontr_disp_bicat_of_univ_cat_with_cat_property.
- exact (λ C H, local_property_in_dfl_comp_cat C (pr1 H) ,, tt).
- refine (λ _ _ _ _ _ HF, tt ,, local_property_in_dfl_comp_cat_functor _).
exact (pr2 HF).
Definition finlim_dfl_comp_cat_unit_local_property
: disp_pstrans
(disp_pseudo_comp
_ _ _ _ _
finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
dfl_comp_cat_to_finlim_disp_psfunctor_local_property)
(disp_pseudo_id _)
finlim_dfl_comp_cat_unit.
Show proof.
Definition finlim_dfl_comp_cat_unit_local_property_pointwise_adjequiv
{C : univ_cat_with_finlim}
(HC : disp_bicat_of_univ_cat_with_cat_property P C)
: disp_left_adjoint_equivalence
(finlim_dfl_comp_cat_unit_pointwise_equiv C)
(finlim_dfl_comp_cat_unit_local_property C HC).
Show proof.
Definition finlim_dfl_comp_cat_unit_inv_local_property
: disp_pstrans
(disp_pseudo_id _)
(disp_pseudo_comp
_ _ _ _ _
finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
dfl_comp_cat_to_finlim_disp_psfunctor_local_property)
finlim_dfl_comp_cat_unit_inv.
Show proof.
: disp_pstrans
(disp_pseudo_comp
_ _ _ _ _
finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
dfl_comp_cat_to_finlim_disp_psfunctor_local_property)
(disp_pseudo_id _)
finlim_dfl_comp_cat_unit.
Show proof.
use make_disp_pstrans_contr.
- apply disp_2cells_iscontr_disp_bicat_of_univ_cat_with_cat_property.
- intros C H.
refine (tt ,, _).
use cat_property_adj_equivalence_of_cats ; cbn.
apply identity_functor_is_adj_equivalence.
- apply disp_2cells_iscontr_disp_bicat_of_univ_cat_with_cat_property.
- intros C H.
refine (tt ,, _).
use cat_property_adj_equivalence_of_cats ; cbn.
apply identity_functor_is_adj_equivalence.
Definition finlim_dfl_comp_cat_unit_local_property_pointwise_adjequiv
{C : univ_cat_with_finlim}
(HC : disp_bicat_of_univ_cat_with_cat_property P C)
: disp_left_adjoint_equivalence
(finlim_dfl_comp_cat_unit_pointwise_equiv C)
(finlim_dfl_comp_cat_unit_local_property C HC).
Show proof.
Definition finlim_dfl_comp_cat_unit_inv_local_property
: disp_pstrans
(disp_pseudo_id _)
(disp_pseudo_comp
_ _ _ _ _
finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
dfl_comp_cat_to_finlim_disp_psfunctor_local_property)
finlim_dfl_comp_cat_unit_inv.
Show proof.
use make_disp_pstrans_inv_contr.
- apply disp_2cells_iscontr_disp_bicat_of_univ_cat_with_cat_property.
- apply finlim_dfl_comp_cat_unit_local_property.
- intros.
apply finlim_dfl_comp_cat_unit_local_property_pointwise_adjequiv.
- apply disp_2cells_iscontr_disp_bicat_of_univ_cat_with_cat_property.
- apply finlim_dfl_comp_cat_unit_local_property.
- intros.
apply finlim_dfl_comp_cat_unit_local_property_pointwise_adjequiv.
Definition finlim_dfl_comp_cat_counit_local_property
: disp_pstrans
(disp_pseudo_id _)
(disp_pseudo_comp
_ _ _ _ _
dfl_comp_cat_to_finlim_disp_psfunctor_local_property
finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property)
finlim_dfl_comp_cat_counit.
Show proof.
Definition finlim_dfl_comp_cat_counit_local_property_pointwise_adjequiv
{C : dfl_full_comp_cat}
(HC : disp_bicat_of_cat_property_dfl_full_comp_cat P C)
: disp_left_adjoint_equivalence
(finlim_dfl_comp_cat_counit_pointwise_equiv C)
(finlim_dfl_comp_cat_counit_local_property C HC).
Show proof.
Definition finlim_dfl_comp_cat_counit_inv_local_property
: disp_pstrans
(disp_pseudo_comp
_ _ _ _ _
dfl_comp_cat_to_finlim_disp_psfunctor_local_property
finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property)
(disp_pseudo_id _)
finlim_dfl_comp_cat_counit_inv.
Show proof.
: disp_pstrans
(disp_pseudo_id _)
(disp_pseudo_comp
_ _ _ _ _
dfl_comp_cat_to_finlim_disp_psfunctor_local_property
finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property)
finlim_dfl_comp_cat_counit.
Show proof.
use make_disp_pstrans_contr.
- apply disp_2cells_iscontr_disp_bicat_of_cat_property_dfl_full_comp_cat.
- refine (λ C H, tt ,, _).
intro x ; cbn.
use (cat_property_adj_equivalence_of_cats' P).
exact (fiber_functor_comprehension_adj_equiv C x).
- apply disp_2cells_iscontr_disp_bicat_of_cat_property_dfl_full_comp_cat.
- refine (λ C H, tt ,, _).
intro x ; cbn.
use (cat_property_adj_equivalence_of_cats' P).
exact (fiber_functor_comprehension_adj_equiv C x).
Definition finlim_dfl_comp_cat_counit_local_property_pointwise_adjequiv
{C : dfl_full_comp_cat}
(HC : disp_bicat_of_cat_property_dfl_full_comp_cat P C)
: disp_left_adjoint_equivalence
(finlim_dfl_comp_cat_counit_pointwise_equiv C)
(finlim_dfl_comp_cat_counit_local_property C HC).
Show proof.
Definition finlim_dfl_comp_cat_counit_inv_local_property
: disp_pstrans
(disp_pseudo_comp
_ _ _ _ _
dfl_comp_cat_to_finlim_disp_psfunctor_local_property
finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property)
(disp_pseudo_id _)
finlim_dfl_comp_cat_counit_inv.
Show proof.
use make_disp_pstrans_inv_contr.
- apply disp_2cells_iscontr_disp_bicat_of_cat_property_dfl_full_comp_cat.
- apply finlim_dfl_comp_cat_counit_local_property.
- intros.
apply finlim_dfl_comp_cat_counit_local_property_pointwise_adjequiv.
- apply disp_2cells_iscontr_disp_bicat_of_cat_property_dfl_full_comp_cat.
- apply finlim_dfl_comp_cat_counit_local_property.
- intros.
apply finlim_dfl_comp_cat_counit_local_property_pointwise_adjequiv.
Definition finlim_dfl_comp_cat_biequivalence_unit_counit_local_property
: is_disp_biequivalence_unit_counit
_ _
finlim_dfl_comp_cat_biequivalence_unit_counit
finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
dfl_comp_cat_to_finlim_disp_psfunctor_local_property.
Show proof.
Definition finlim_biequiv_dfl_comp_cat_psfunctor_local_property
: disp_is_biequivalence_data
_
_
finlim_dfl_comp_cat_biequivalence_adjoints
finlim_dfl_comp_cat_biequivalence_unit_counit_local_property.
Show proof.
: is_disp_biequivalence_unit_counit
_ _
finlim_dfl_comp_cat_biequivalence_unit_counit
finlim_biequiv_dfl_comp_cat_disp_psfunctor_local_property
dfl_comp_cat_to_finlim_disp_psfunctor_local_property.
Show proof.
simple refine (_ ,, _).
- exact finlim_dfl_comp_cat_unit_local_property.
- exact finlim_dfl_comp_cat_counit_inv_local_property.
- exact finlim_dfl_comp_cat_unit_local_property.
- exact finlim_dfl_comp_cat_counit_inv_local_property.
Definition finlim_biequiv_dfl_comp_cat_psfunctor_local_property
: disp_is_biequivalence_data
_
_
finlim_dfl_comp_cat_biequivalence_adjoints
finlim_dfl_comp_cat_biequivalence_unit_counit_local_property.
Show proof.
simple refine (_ ,, _ ,, (_ ,, _) ,, (_ ,, _)).
- exact finlim_dfl_comp_cat_unit_inv_local_property.
- exact finlim_dfl_comp_cat_counit_local_property.
- use make_disp_invmodification_contr.
apply disp_2cells_iscontr_disp_bicat_of_univ_cat_with_cat_property.
- use make_disp_invmodification_contr.
apply disp_2cells_iscontr_disp_bicat_of_univ_cat_with_cat_property.
- use make_disp_invmodification_contr.
apply disp_2cells_iscontr_disp_bicat_of_cat_property_dfl_full_comp_cat.
- use make_disp_invmodification_contr.
apply disp_2cells_iscontr_disp_bicat_of_cat_property_dfl_full_comp_cat.
End LocalPropertyBiequiv.- exact finlim_dfl_comp_cat_unit_inv_local_property.
- exact finlim_dfl_comp_cat_counit_local_property.
- use make_disp_invmodification_contr.
apply disp_2cells_iscontr_disp_bicat_of_univ_cat_with_cat_property.
- use make_disp_invmodification_contr.
apply disp_2cells_iscontr_disp_bicat_of_univ_cat_with_cat_property.
- use make_disp_invmodification_contr.
apply disp_2cells_iscontr_disp_bicat_of_cat_property_dfl_full_comp_cat.
- use make_disp_invmodification_contr.
apply disp_2cells_iscontr_disp_bicat_of_cat_property_dfl_full_comp_cat.