Library UniMath.CategoryTheory.Actegories.Actegories

the concept of left action of a monoidal category on a category
written by Ralph Matthes in lockstep with the code in UniMath.CategoryTheory.MonoidalOld.MonoidalCategoriesWhiskered
naming is inspired from https://ncatlab.org/nlab/show/actegory: the whole structure is an actegory, the binary operation is the action, the extra data are the action_unitor and the actor, together with their inverses
2022
given the monoidal category that acts upon categories
Data
Definition action_data (C : category) : UU :=
  bifunctor_data V C C.
Identity Coercion actionintobifunctor : action_data >-> bifunctor_data.

the following widens the concept of left unitor of a monoidal category, a right unitor is not appropriate for actions
Definition action_unitor_data {C : category} (A : action_data C) : UU :=
   (x : C), CI_{Mon_V} _{A} x, x.

Definition action_unitorinv_data {C : category} (A : action_data C) : UU :=
   (x : C), Cx, I_{Mon_V} _{A} x.

Definition actor_data {C : category} (A : action_data C) : UU :=
   (v w : V) (x : C), C (v _{Mon_V} w) _{A} x, v _{A} (w _{A} x).

Definition actorinv_data {C : category} (A : action_data C) : UU :=
   (v w : V) (x : C), C v _{A} (w _{A} x), (v _{Mon_V} w) _{A} x.

Definition actegory_data (C : category) : UU :=
     A : action_data C,
        (action_unitor_data A) × (action_unitorinv_data A) ×
           (actor_data A) × (actorinv_data A).

Definition make_actegory_data {C : category} {A : action_data C}
  (au : action_unitor_data A) (auinv : action_unitorinv_data A)
  ( : actor_data A) (aαinv : actorinv_data A) : actegory_data C
  := (A,,au,,auinv,,,,aαinv).

Definition actegory_action_data {C : category} (AD : actegory_data C) : action_data C := pr1 AD.
Coercion actegory_action_data : actegory_data >-> action_data.

Definition actegory_unitordata {C : category} (AD : actegory_data C) : action_unitor_data AD
  := pr1 (pr2 AD).
Notation "au_{ AD }" := (actegory_unitordata AD).

Definition actegory_unitorinvdata {C : category} (AD : actegory_data C) : action_unitorinv_data AD
  := pr12 (pr2 AD).
Notation "auinv_{ AD }" := (actegory_unitorinvdata AD).

Definition actegory_actordata {C : category} (AD : actegory_data C) : actor_data AD
  := pr12 (pr2 (pr2 AD)).
Notation "aα_{ AD }" := (actegory_actordata AD).

Definition actegory_actorinvdata {C : category} (AD : actegory_data C) : actorinv_data AD
  := pr22 (pr2 (pr2 AD)).
Notation "aαinv_{ AD }" := (actegory_actorinvdata AD).

Axioms
Definition action_unitor_nat {C : category} {A : action_data C} (au : action_unitor_data A) : UU :=
   (x y : C), (f : C x,y), I_{Mon_V} ⊗^{A}_{l} f · au y = au x · f.

Definition action_unitorinv_nat {C : category} {A : action_data C} (auinv : action_unitorinv_data A) : UU :=
   (x y : C), (f : C x,y), auinv x · I_{Mon_V} ⊗^{A}_{l} f = f · auinv y.

Definition action_unitor_iso_law {C : category} {A : action_data C} (au : action_unitor_data A) (auinv : action_unitorinv_data A) : UU :=
   (x : C), is_inverse_in_precat (au x) (auinv x).

Definition action_unitor_law {C : category} {A : action_data C} (au : action_unitor_data A) (auinv : action_unitorinv_data A) : UU :=
  action_unitor_nat au × action_unitor_iso_law au auinv.

Definition action_unitorlaw_nat {C : category} {A : action_data C} {au : action_unitor_data A} {auinv : action_unitorinv_data A}
  (aul : action_unitor_law au auinv) : action_unitor_nat au := pr1 aul.

Definition action_unitorlaw_iso_law {C : category} {A : action_data C} {au : action_unitor_data A} {auinv : action_unitorinv_data A}
  (aul : action_unitor_law au auinv) : action_unitor_iso_law au auinv := pr2 aul.

Definition actor_nat_leftwhisker {C : category} {A : action_data C} ( : actor_data A) : UU
  := (v w : V) (z z' : C) (h : Cz,z'),
    ( v w z) · (v ⊗^{A}_{l} (w ⊗^{A}_{l} h)) = ((v _{Mon_V} w) ⊗^{A}_{l} h) · ( v w z').

Definition actor_nat_rightwhisker {C : category} {A : action_data C} ( : actor_data A) : UU
  := (v v' w : V) (z : C) (f : Vv,v'),
    ( v w z) · (f ⊗^{A}_{r} (w _{A} z)) = ((f ⊗^{Mon_V}_{r} w) ⊗^{A}_{r} z) · ( v' w z).

Definition actor_nat_leftrightwhisker {C : category} {A : action_data C} ( : actor_data A) : UU
  := (v w w' : V) (z : C) (g : Vw,w'),
    ( v w z) · (v ⊗^{A}_{l} (g ⊗^{A}_{r} z)) = ((v ⊗^{Mon_V}_{l} g) ⊗^{A}_{r} z) · ( v w' z).

Definition actor_iso_law {C : category} {A : action_data C} ( : actor_data A) (aαinv : actorinv_data A) : UU
  := (v w : V) (z : C), is_inverse_in_precat ( v w z) (aαinv v w z).

Definition actor_law {C : category} {A : action_data C} ( : actor_data A) (aαinv : actorinv_data A) : UU :=
  (actor_nat_leftwhisker ) × (actor_nat_rightwhisker ) ×
    (actor_nat_leftrightwhisker ) × (actor_iso_law aαinv).

Definition actorlaw_natleft {C : category} {A : action_data C} { : actor_data A} {aαinv : actorinv_data A}
  (aαl : actor_law aαinv) : actor_nat_leftwhisker := pr1 aαl.
Definition actorlaw_natright {C : category} {A : action_data C} { : actor_data A} {aαinv : actorinv_data A}
  (aαl : actor_law aαinv) : actor_nat_rightwhisker := pr1 (pr2 aαl).
Definition actorlaw_natleftright {C : category} {A : action_data C} { : actor_data A} {aαinv : actorinv_data A}
  (aαl : actor_law aαinv) : actor_nat_leftrightwhisker := pr1 (pr2 (pr2 aαl)).
Definition actorlaw_iso_law {C : category} {A : action_data C} { : actor_data A} {aαinv : actorinv_data A}
  (aαl : actor_law aαinv) : actor_iso_law aαinv := pr2 (pr2 (pr2 aαl)).

Definition actegory_triangle_identity {C : category}
           {A : action_data C}
           (au : action_unitor_data A)
           ( : actor_data A)
  := (v : V) (y : C), ( v I_{Mon_V} y) · (v ⊗^{A}_{l} (au y)) = (ru_{Mon_V} v) ⊗^{A}_{r} y.

Definition actegory_triangle_identity' {C : category}
           {A : action_data C}
           (au : action_unitor_data A)
           ( : actor_data A)
    := (v : V) (y : C), ( I_{Mon_V} v y) · (au (v _{A} y)) = (lu_{Mon_V} v) ⊗^{A}_{r} y.

Definition actegory_pentagon_identity {C : category} {A : action_data C} ( : actor_data A) : UU :=
   (w v v' : V) (z : C),
    ((α_{Mon_V} w v v') ⊗^{A}_{r} z) · ( w (v _{Mon_V} v') z) · (w ⊗^{A}_{l} ( v v' z)) =
      ( (w_{Mon_V} v) v' z) · ( w v (v' _{A} z)).

Definition actegory_laws {C : category} (AD : actegory_data C) : UU :=
  is_bifunctor AD ×
  (action_unitor_law au_{AD} auinv_{AD}) × (actor_law aα_{AD} aαinv_{AD}) ×
    (actegory_triangle_identity au_{AD} aα_{AD}) × (actegory_pentagon_identity aα_{AD}).

Definition actegory (C : category) : UU :=
   (AD : actegory_data C), (actegory_laws AD).

Definition actegory_actdata {C : category} (Act : actegory C) : actegory_data C := pr1 Act.
Coercion actegory_actdata : actegory >-> actegory_data.

Definition actegory_actlaws {C : category} (Act : actegory C) : actegory_laws Act := pr2 Act.

Definition actegory_action_is_bifunctor {C : category} (Act : actegory C) : is_bifunctor Act
  := pr12 Act.

Coercion actegory_action
         {C : category}
         (Act : actegory C)
  : bifunctor V C C
  := _ ,, actegory_action_is_bifunctor Act.

Definition actegory_unitorlaw {C : category} (Act : actegory C) : action_unitor_law au_{Act} auinv_{Act} := pr12 (actegory_actlaws Act).
Definition actegory_unitornat {C : category} (Act : actegory C) : action_unitor_nat au_{Act} := action_unitorlaw_nat (actegory_unitorlaw Act).
Definition actegory_unitorisolaw {C : category} (Act : actegory C) : action_unitor_iso_law au_{Act} auinv_{Act} := action_unitorlaw_iso_law (actegory_unitorlaw Act).

Lemma actegory_unitorinvnat {C : category} (Act : actegory C) : action_unitorinv_nat auinv_{Act}.
Show proof.
  intros x y f.
  apply (z_iso_inv_on_right _ _ _ (_,,_,,actegory_unitorisolaw Act x)).
  cbn.
  rewrite assoc.
  apply (z_iso_inv_on_left _ _ _ _ (_,,_,,actegory_unitorisolaw Act y)).
  apply pathsinv0, actegory_unitornat.

Definition actegory_actorlaw {C : category} (Act : actegory C) : actor_law aα_{Act} aαinv_{Act} := pr122 (actegory_actlaws Act).
Definition actegory_actornatleft {C : category} (Act : actegory C) : actor_nat_leftwhisker aα_{Act} := actorlaw_natleft (actegory_actorlaw Act).
Definition actegory_actornatright {C : category} (Act : actegory C) : actor_nat_rightwhisker aα_{Act} := actorlaw_natright (actegory_actorlaw Act).
Definition actegory_actornatleftright {C : category} (Act : actegory C) : actor_nat_leftrightwhisker aα_{Act} := actorlaw_natleftright (actegory_actorlaw Act).
Definition actegory_actorisolaw {C : category} (Act : actegory C) : actor_iso_law aα_{Act} aαinv_{Act} := actorlaw_iso_law (actegory_actorlaw Act).

Lemma actor_nat1 {C : category} (Act : actegory C)
  {v v' w w' : V} {z z' : C} (f : Vv,v') (g : Vw,w') (h : Cz,z') :
  (actegory_actordata Act v w z) · ((f ⊗^{Act}_{r} (w _{Act} z)) · (v' ⊗^{Act}_{l} ((g ⊗^{Act}_{r} z) · (w' ⊗^{Act}_{l} h)))) =
    (((f ⊗^{Mon_V}_{r} w) · (v' ⊗^{Mon_V}_{l} g)) ⊗^{Act}_{r} z) · ((v' _{Mon_V} w') ⊗^{Act}_{l} h) · (actegory_actordata Act v' w' z').
Show proof.
  rewrite assoc.
  rewrite (actegory_actornatright Act).
  rewrite assoc'.
  etrans. {
    apply cancel_precomposition.
    rewrite (bifunctor_leftcomp Act).
    rewrite assoc.
    rewrite (actegory_actornatleftright Act).
    apply idpath.
  }

  etrans. {
    apply cancel_precomposition.
    rewrite assoc'.
    apply cancel_precomposition.
    apply (actegory_actornatleft Act).
  }
  rewrite assoc.
  rewrite assoc.
  apply cancel_postcomposition.
  apply pathsinv0.
  rewrite (bifunctor_rightcomp Act).
  apply idpath.

Lemma actor_nat2 {C : category} (Act : actegory C)
  {v v' w w' : V} {z z' : C} (f : Vv,v') (g : Vw,w') (h : Cz,z') :
  (actegory_actordata Act v w z) · (f ⊗^{Act} (g ⊗^{Act} h)) =
    ((f ⊗^{Mon_V} g) ⊗^{Act} h) · (actegory_actordata Act v' w' z').
Show proof.
  intros.
  unfold functoronmorphisms1.
  exact (actor_nat1 Act f g h).

Definition actegory_triangleidentity {C : category} (Act : actegory C) : actegory_triangle_identity au_{Act} aα_{Act} := pr1 (pr222 (actegory_actlaws Act)).
Definition actegory_pentagonidentity {C : category} (Act : actegory C) : actegory_pentagon_identity aα_{Act} := pr2 (pr222 (actegory_actlaws Act)).

Lemma isaprop_actegory_laws {C : category} (AD : actegory_data C)
  : isaprop (actegory_laws AD).
Show proof.
  repeat (apply isapropdirprod)
  ; repeat (apply impred ; intro)
  ; repeat (try apply C)
  ; repeat (apply isaprop_is_inverse_in_precat).

Some additional data and properties which one deduces from actegories

Lemma action_unitor_nat_z_iso {C : category} (Act : actegory C):
  nat_z_iso (leftwhiskering_functor Act I_{Mon_V}) (functor_identity C).
Show proof.
  use make_nat_z_iso.
  - use make_nat_trans.
    + exact (λ x, au_{Act} x).
    + exact (λ x y f, actegory_unitornat Act x y f).
  - intro x. exists (auinv_{Act} x).
    apply (actegory_unitorisolaw Act x).

Definition z_iso_from_actor_iso
  {C : category} (Act : actegory C) (v w : V) (x : C)
  : z_iso ((v _{Mon_V} w) _{Act} x) (v _{Act} (w _{Act} x))
  := make_z_iso
       (aα_{Act} v w x)
       (aαinv_{Act} v w x)
       (actegory_actorisolaw Act v w x).

Definition actorinv_nat_leftwhisker {C : category} (Act : actegory C) :
   (v w : V) (z z' : C) (h : Cz,z'),
    (v ⊗^{Act}_{l} (w ⊗^{Act}_{l} h)) · (aαinv_{Act} v w z') = (aαinv_{Act} v w z) · ((v _{Mon_V} w) ⊗^{Act}_{l} h) .
Show proof.
  intros v w z z' h.
  apply (swap_nat_along_zisos (z_iso_from_actor_iso Act v w z) (z_iso_from_actor_iso Act v w z')).
  apply actegory_actornatleft.

Definition actorinv_nat_rightwhisker {C : category} (Act : actegory C) :
   (v v' w : V) (z: C) (f : Vv,v'),
    (f ⊗^{Act}_{r} (w _{Act} z)) · (aαinv_{Act} v' w z) = (aαinv_{Act} v w z) · ((f ⊗^{Mon_V}_{r} w) ⊗^{Act}_{r} z).
Show proof.
  intros v v' w z f.
  apply (swap_nat_along_zisos (z_iso_from_actor_iso Act v w z) (z_iso_from_actor_iso Act v' w z)).
  apply actegory_actornatright.

Definition actorinv_nat_leftrightwhisker {C : category} (Act : actegory C) :
   (v w w' : V) (z : C) (g : Vw,w'),
    (v ⊗^{Act}_{l} (g ⊗^{Act}_{r} z)) · (aαinv_{Act} v w' z) = (aαinv_{Act} v w z) · ((v ⊗^{Mon_V}_{l} g) ⊗^{Act}_{r} z).
Show proof.
  intros v w w' z g.
  apply (swap_nat_along_zisos (z_iso_from_actor_iso Act v w z) (z_iso_from_actor_iso Act v w' z)).
  apply actegory_actornatleftright.

Definition actorinv_nat1 {C : category} (Act : actegory C)
  {v v' w w' : V} {z z' : C} (f : Vv,v') (g : Vw,w') (h : Cz,z') :
  ((f ⊗^{Act}_{r} (w _{Act} z)) · (v' ⊗^{Act}_{l} ((g ⊗^{Act}_{r} z) · (w' ⊗^{Act}_{l} h)))) · (aαinv_{Act} v' w' z') =
    (aαinv_{Act} v w z) · ((((f ⊗^{Mon_V}_{r} w) · (v' ⊗^{Mon_V}_{l} g)) ⊗^{Act}_{r} z) · ((v' _{Mon_V} w') ⊗^{ Act}_{l} h)).
Show proof.
  apply (swap_nat_along_zisos
           (z_iso_from_actor_iso Act v w z)
           (z_iso_from_actor_iso Act v' w' z')
        ).
  unfold z_iso_from_actor_iso.
  unfold make_z_iso.
  unfold make_is_z_isomorphism.
  unfold pr1.
  apply actor_nat1.

Lemma actorinv_nat2 {C : category} (Act : actegory C)
  {v v' w w' : V} {z z' : C} (f : Vv,v') (g : Vw,w') (h : Cz,z') :
  (f ⊗^{Act} (g ⊗^{Act} h)) · (aαinv_{Act} v' w' z') = (aαinv_{Act} v w z) · ((f ⊗^{Mon_V} g) ⊗^{Act} h).
Show proof.
  intros.
  unfold functoronmorphisms1.
  apply actorinv_nat1.

Lemma pentagon_identity_actorinv {C : category} (Act : actegory C) (w v u : V) (z : C):
  w ⊗^{ Act}_{l} (aαinv_{Act} v u z)
  · aαinv_{Act} w (v _{Mon_V} u) z
  · αinv_{Mon_V} w v u ⊗^{Act}_{r} z =
    aαinv_{Act} w v (u _{Act} z)
  · aαinv_{Act} (w _{Mon_V} v) u z.
Show proof.
  apply pathsinv0.
  apply (z_iso_inv_on_right _ _ _ (z_iso_from_actor_iso Act _ _ _)).
  unfold z_iso_from_actor_iso.
  unfold make_z_iso.
  unfold make_is_z_isomorphism.
  etrans. { apply (pathsinv0 (id_right _)). }
  apply (z_iso_inv_on_right _ _ _ (z_iso_from_actor_iso Act _ _ _)).
  cbn.
  apply pathsinv0.
  etrans. {
   rewrite assoc.
   apply cancel_postcomposition.
   apply (pathsinv0 (actegory_pentagonidentity Act w v u z)).
  }
  etrans. {
    rewrite assoc.
    rewrite assoc.
    apply cancel_postcomposition.
    apply cancel_postcomposition.
    rewrite assoc'.
    apply cancel_precomposition.
    apply (pathsinv0 (bifunctor_leftcomp Act _ _ _ _ _ _)).
  }
  etrans. {
    apply cancel_postcomposition.
    apply cancel_postcomposition.
    apply cancel_precomposition.
    apply maponpaths.
    apply (pr2 (z_iso_from_actor_iso Act v u z)).
  }
  etrans. {
    apply cancel_postcomposition.
    apply cancel_postcomposition.
    apply cancel_precomposition.
    apply (bifunctor_leftid Act).
  }
  etrans. {
    apply cancel_postcomposition.
    apply cancel_postcomposition.
    apply id_right.
  }
  etrans. {
    apply cancel_postcomposition.
    rewrite assoc'.
    apply cancel_precomposition.
    apply (pr2 (z_iso_from_actor_iso Act w (v_{Mon_V}u) z)).
  }
  etrans. {
    apply cancel_postcomposition.
    apply id_right.
  }
  etrans. {
    apply (pathsinv0 (bifunctor_rightcomp Act _ _ _ _ _ _)).
  }
  etrans. {
    apply maponpaths.
    apply (pr2 (pr2 (z_iso_from_associator_iso Mon_V w v u))).
  }
  apply (bifunctor_rightid Act).

End A.

Arguments actegory_unitordata {_ _ _} _ _.
Arguments actegory_unitorinvdata {_ _ _} _ _.
Arguments actegory_actordata {_ _ _} _ _ _ _.
Arguments actegory_actorinvdata {_ _ _} _ _ _ _.

Module ActegoryNotations.
  Notation "au_{ Act }" := (actegory_unitordata Act).
  Notation "aα_{ Act }" := (actegory_actordata Act).
  Notation "au^{ Act }_{ x }" := (actegory_unitordata Act x ).
  Notation "aα^{ Act }_{ v , w , x }" := (actegory_actordata Act v w x).
  Notation "auinv^{ Act }_{ x }" := (actegory_unitorinvdata Act x ).
  Notation "aαinv^{ Act }_{ v , w , x }" := (actegory_actorinvdata Act v w x).
End ActegoryNotations.

Section EquivalenceFromTensorWithUnit.

  Import MonoidalNotations.
  Context {V : category} (Mon_V : monoidal V) {C : category} (Act : actegory Mon_V C).

  Definition ladjunction_data_from_action_with_unit
    : Core.adjunction_data C C.
  Show proof.
    exists (leftwhiskering_functor (actegory_action _ Act) I_{Mon_V}).
    exists (functor_identity C).
    use tpair.
    - apply (nat_z_iso_inv (action_unitor_nat_z_iso _ Act)).
    - apply (action_unitor_nat_z_iso _ Act).

  Definition lequivalence_from_action_with_unit
    : equivalence_of_cats C C.
  Show proof.
    exists ladjunction_data_from_action_with_unit.
    split.
    - intro ; apply (nat_z_iso_inv (action_unitor_nat_z_iso _ Act)).
    - intro ; apply (action_unitor_nat_z_iso _ Act).

  Lemma leftwhiskering_fullyfaithful_action
    : fully_faithful (leftwhiskering_functor (actegory_action _ Act) I_{Mon_V}).
  Show proof.

  Lemma leftwhiskering_faithful_action
    : faithful (leftwhiskering_functor (actegory_action _ Act) I_{Mon_V}).
  Show proof.

End EquivalenceFromTensorWithUnit.

Section SecondTriangleEquality.

  Import MonoidalNotations.
  Import ActegoryNotations.

  Context {V : category} (Mon_V : monoidal V) {C : category} (Act : actegory Mon_V C).

  Local Lemma lemma0 (v : V) (x : C) :
    (α_{Mon_V} I_{Mon_V} I_{Mon_V} v) ⊗^{Act}_{r} x · (I_{ Mon_V} ⊗^{ Mon_V}_{l} lu^{ Mon_V }_{ v}) ⊗^{ Act}_{r} x =
      (ru^{ Mon_V }_{ I_{ Mon_V}} ⊗^{ Mon_V}_{r} v) ⊗^{ Act}_{r} x.
  Show proof.
    refine (! bifunctor_rightcomp Act _ _ _ _ _ _ @ _).
    apply maponpaths.
    apply (monoidal_triangleidentity Mon_V I_{Mon_V} v).

  Local Lemma lemma2 (v : V) (x : C) :
    I_{Mon_V} ⊗^{Act}_{l} (lu_{Mon_V} v ⊗^{Act}_{r} x) = aαinv^{Act}_{ I_{Mon_V}, (I_{Mon_V} _{Mon_V} v), x} · (((I_{Mon_V} ⊗^{Mon_V}_{l} lu_{Mon_V} v) ⊗^{Act}_{r} x) · aα_{Act} I_{Mon_V} v x).
  Show proof.
    set (aαiso := make_z_iso _ _ (actegory_actorisolaw Mon_V Act I_{Mon_V} (I_{Mon_V} _{Mon_V} v) x)).
    apply pathsinv0.
    apply (z_iso_inv_on_right _ _ _ aαiso).
    apply pathsinv0.
    apply (actegory_actornatleftright Mon_V Act).

  Local Lemma lemma2' (v : V) (x : C) :
    (I_{ Mon_V} ⊗^{ Mon_V}_{l} lu^{ Mon_V }_{ v}) ⊗^{ Act}_{r} x =
      αinv^{ Mon_V }_{ I_{ Mon_V}, I_{ Mon_V}, v} ⊗^{ Act}_{r} x
             · (ru^{ Mon_V }_{ I_{ Mon_V}} ⊗^{ Mon_V}_{r} v) ⊗^{ Act}_{r} x.
  Show proof.
    apply pathsinv0.
    set (αiso := make_z_iso _ _ (monoidal_associatorisolaw Mon_V I_{Mon_V} I_{Mon_V} v)).
    set (αisor := functor_on_z_iso (rightwhiskering_functor Act x) αiso).
    apply (z_iso_inv_on_right _ _ _ αisor).
    apply pathsinv0.
    apply lemma0.

  Local Lemma lemma3 (v : V) (x : C) :
    I_{Mon_V} ⊗^{Act}_{l} (lu_{Mon_V} v ⊗^{Act}_{r} x) =
      aαinv^{Act}_{ I_{Mon_V}, (I_{Mon_V} _{Mon_V} v), x}
        · ((((αinv_{Mon_V} I_{Mon_V} I_{Mon_V} v) ⊗^{Act}_{r} x)
        · (ru_{Mon_V} I_{Mon_V} ⊗^{Mon_V}_{r} v) ⊗^{Act}_{r} x)
        · aα_{Act} I_{Mon_V} v x).
  Show proof.
    refine (lemma2 v x @ _).
    apply maponpaths.
    apply maponpaths_2.
    apply lemma2'.

  Local Lemma right_whisker_with_action_unitor' (v : V) (x : C) :
    I_{Mon_V} ⊗^{Act}_{l} (lu_{Mon_V} v ⊗^{Act}_{r} x) =
      I_{Mon_V} ⊗^{Act}_{l} (aα_{Act} I_{Mon_V} v x · au_{Act} (v _{Act} x)).
  Show proof.
    refine (lemma3 v x @ _).
    set (aαiso := make_z_iso _ _ (actegory_actorisolaw Mon_V Act I_{Mon_V} (I_{Mon_V} _{Mon_V} v) x)).
    apply (z_iso_inv_on_right _ _ _ aαiso).
    set (αiso' := make_z_iso _ _ (monoidal_associatorisolaw Mon_V I_{Mon_V} I_{Mon_V} v)).
    set (αisor := functor_on_z_iso (rightwhiskering_functor Act x) αiso').
    etrans. { apply assoc'. }
    apply (z_iso_inv_on_right _ _ _ αisor).
    apply pathsinv0.
    simpl.

    etrans. { apply assoc. }
    etrans.
    {
      apply maponpaths.
      apply (bifunctor_leftcomp Act _ _ _ _ _ _).
    }

    etrans. { apply assoc. }
    etrans. {
      apply maponpaths_2.
      apply (actegory_pentagonidentity Mon_V Act I_{Mon_V} I_{Mon_V} v x).
    }

    etrans.
    2: {
      apply (actegory_actornatright Mon_V Act).
    }

    etrans. { apply assoc'. }
    apply maponpaths.
    apply actegory_triangleidentity.

  Lemma right_whisker_with_action_unitor : actegory_triangle_identity' Mon_V au_{Act} aα_{Act}.
  Show proof.
    intros v x.
    use faithful_reflects_commutative_triangle.
    3: { apply (leftwhiskering_faithful_action(V:=V)). }
    apply pathsinv0.
    refine (right_whisker_with_action_unitor' _ _ @ _).
    apply (bifunctor_leftcomp Act).

  Definition actegory_triangleidentity' := right_whisker_with_action_unitor.

End SecondTriangleEquality.